Weights are not updated after training
1 view (last 30 days)
Show older comments
I am designing this network , 7 inputs , 3 outputs , the input data are imported from a simulink file , and the weights are exported to the same simulink model after the training , the training is done , unfortunately weights are not updated
net = network; net.name = 'Test'; net.numInputs = 7; net.numLayers = 6; net.biasConnect = ones(net.numLayers,1);
numHidden = 3 ; % Number of the Hidden Layers
%Connecting the inputs with the hidden layer for i=1:net.numInputs net.inputs{i}.size =1; for j=1:numHidden net.inputConnect(j,i) = 1; end end
%Connection 1,2,3 Hidden neuron to output 1,2,3 neuron net.layerConnect(4,1)=1; net.layerConnect(5,2)=1; net.layerConnect(6,3)=1;
%Configuration of the Hidden Layers for i=1:numHidden net.layers{i}.size = 1; net.layers{i}.transferFcn = 'logsig'; net.layers{i}.initFcn = 'initwb'; end
%%Kp,Ki, Kd Hidden Layer name net.layers{1}.name = 'Hidden Layer Kp'; net.layers{2}.name = 'Hidden Layer Ki'; net.layers{3}.name = 'Hidden Layer Kd';
%Configuration of the Output Layers for i=numHidden+1:net.numLayers net.layers{i}.size = 1; net.layers{i}.transferFcn = 'logsig'; net.layers{i}.initFcn = 'initwb'; end
%Kp,Ki, Kd Output Layer name net.layers{4}.name = 'Output Kp'; net.layers{5}.name = 'Output Ki'; net.layers{6}.name = 'Output Kd';
%Connecting the Hidden with the Outputs for i=numHidden+1:net.numLayers net.outputConnect(i) = 1; end
%Kp,Ki, Kd Outputs name net.outputs{4}.name = 'Kp'; net.outputs{5}.name = 'Ki'; net.outputs{6}.name = 'Kd';
%Wheight Initialization for i=1:net.numLayers %Input Weights for j=1:net.numInputs net.inputWeights{i,j}.initFcn = 'rands'; end end
for i=1:net.numLayers %Layers Weights for j=1:net.numLayers net.layerWeights{i,j}.initFcn = 'rands'; end end
for i=1:net.numLayers %bias Weights net.biases{i}.initFcn = 'rands'; end
%Network and Training Configuration net.divideFcn = 'dividetrain'; net.initFcn = 'initlay'; net=init(net); % net.trainFcn = 'traingd'; % net.trainParam.epochs=100000; % net.trainParam.lr=0.000001; % net.trainParam.goal=1e-6; % net.trainParam.min_grad=0.004;
net.performFcn='mse'; net.performParam.ratio=0.00005; Input_Weights = net.IW; Layer_Weights = net.LW; Bias_Weights = net.b;
%% Train Network % clc % net.adaptFcn = 'adaptwb'; % net.adaptParam = for i=1:100 simout=sim('ModelName');
p = [un,un1,yn,y1,cn,cn1,en];
p = p';
y=[Kp,Ki,Kd];
y=y';
pS(:,i) = p(:,2);
yS(:,i) = y(:,2);
wS(i)=net.IW{1,1};
% net =train(net,p,y);
[net,y,E] = adapt(net,p,y);
net.adaptFcn
net.adaptParam='learnpn';
end
0 Comments
Answers (0)
See Also
Categories
Find more on Define Shallow Neural Network Architectures in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!