How to differentiate a piecewise function?

26 views (last 30 days)
Hi to all. I have a piecewise function and I want to differentiate it but the derivative will not exist at endpoints. I tried to interpolate it such that the edges are more smooth and the derivative is continuous, but when I plot it, I still get the harsh edges. What to do now? This is my code:
t=0:60;
L =(15-t/2).*(t>=0 & t<=20)+...
(5).*(t>20 & t<=40 )+(-15+t/2).*(t>40 & t<=60 );
P=interp1(t,L,'pchip');
hold on
plot (t,P,'linewidth',4)
xlim([0 70])
ylim([0 20])

Accepted Answer

Image Analyst
Image Analyst on 7 Jul 2018
Since you know the formula, you have an advantage - you can just use the known derivative:
t=0:60;
L =(15-t/2).*(t>=0 & t<=20)+...
(5).*(t>20 & t<=40 )+(-15+t/2).*(t>40 & t<=60 );
P=interp1(t,L,'pchip');
% Plot L vs. t
subplot(3, 1, 1);
plot (t, L, 'LineWidth', 4)
xlim([0 70])
ylim([0 20])
grid on;
xlabel('t', 'FontSize', 20);
ylabel('L', 'FontSize', 20);
% Plot P vs. t
subplot(3, 1, 2);
plot (t, P, 'LineWidth', 4)
xlim([0 70])
ylim([0 20])
grid on;
xlabel('t', 'FontSize', 20);
ylabel('P', 'FontSize', 20);
% Since we know the formula and when it starts and stops each piece
% we can compute the derivative analytically:
dLdt = zeros(1,length(L));
range1 = t>=0 & t<=20;
dLdt(range1) = -0.5;
range2 = t>40 & t<=60;
dLdt(range2) = 0.5;
% Plot dLdt vs. t
subplot(3, 1, 3);
plot (t, dLdt, 'b^-', 'LineWidth', 2)
xlim([0 70])
grid on;
xlabel('t', 'FontSize', 20);
ylabel('dLdt', 'FontSize', 20);
ax = gca;
ax.XAxisLocation = 'origin';

More Answers (0)

Categories

Find more on Interpolation in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!