Need help! I try to build Neural Network but it does not fit well with the training data!

1 view (last 30 days)
I check my feed forward and backpropagation but cant find error, please help! Thank you so much.
Here is my code:
%% Prepare data
% train data:
I=1; % number of independent variables
F=1; % number of dependent varaiables
Ib=[-pi:0.1:(4*pi)].'; % input matrix
Yb= sin(Ib); % (actual) output matrix
P=size(Ib,1); % number of observations
% Normalize:
Input(:,1)=(Ib(:,1)-min(Ib(:,1)))/(max(Ib(:,1))-min(Ib(:,1)));
Y(:,1)=(Yb(:,1)-min(Yb(:,1)))/(max(Yb(:,1))-min(Yb(:,1)));
%% Neural Network:
% hyperparameter for NN:
Gen=10^8; % number of times train neural network
Epsi= 10^(-7); % tolerance
SSEold=999; % sum squared error
m=0; % update step size
A=1;
B=10000;
mu=A/(B+m); % step size or rate of learning
% layer:
N=1; % number of hidden layers
H=15; % number of hidden nodes
g=0.01;
% Initial parameter:
W1=rand(I+1,H);
X=g.*rand(H,F);
bias=g*rand(P,1); % bias node
bias1=g*rand(1,1); % bias weight to output layer
% Add bias node to Input layer:
Input=cat(2,Input,bias);
Err=10;
while (Err >Epsi && m < Gen)
%% Forward probagation:
Vp=Input*W1;
Vp=1./(1+exp(-Vp));
Yhat=bias1+Vp*X;
SSEnew=sum(abs(Y-Yhat).^2,1);
%% Backward probagation:
Yerr=Y-Yhat;
bias1=bias1+mu*sum(Yerr);
W1=W1+mu*(Input.')*(Yerr*(X.').*Vp.*(1-Vp));
X=X+mu*(Yerr'*Vp).';
%% Update:
m=m+1;
mu=A/(B+m);
%% Calculate Sum Squared Error:
Err=abs(SSEnew-SSEold);
SSEold=SSEnew;
end
%% plot
figure1=figure;
grid on
plot(Y)
hold on
plot(Yhat)

Accepted Answer

Greg Heath
Greg Heath on 26 Nov 2018
>> Vp = Input * W1;
Error using *
>> size(Input), size(W1)
ans =
158 4
ans =
2 15
Hope this helps
Thank you for formally accepting my answer
Greg
  1 Comment
Quang Cung
Quang Cung on 26 Nov 2018
Hi Greg Heath, that was a good catch, thanks for that, but I still got a problem with the code, the result from NN does not fit well with the train data set. Here is the code after I modified, please help me to fix it. Thanks.
clear all
clc
%% Prepare data
% =========train data===========
Ib=[-pi:0.1:(4*pi)].'; % input matrix
Yb= sin(Ib); % (actual) output matrix
% ==========Normalize============
Input(:,1)=(Ib(:,1)-min(Ib(:,1)))/(max(Ib(:,1))-min(Ib(:,1)));
Y(:,1)=(Yb(:,1)-min(Yb(:,1)))/(max(Yb(:,1))-min(Yb(:,1)));
%% Neural Network:
P=size(Input,1); % number of observations
I=size(Input,2); % number of independent variables
F=size(Y,2); % number of dependent varaiables
% =========operational parameter for NN===========
Gen= 10^(6); % number of times train neural network
Epsi= 10^(-7); % tolerance
m=0; % update step size
A=1;
B=10000;
mu=A/(B+m); % step size or rate of learning
SSEold=999; % sum squared error
% ============layer================================
N=1; % number of hidden layers
H=15; % number of hidden nodes
g=0.5;
% ============Initial parameter====================
W1=rand(I+1,H);
X=g.*rand(H,F);
bias=g*rand(P,1); % bias node
bias1=g*rand(1,1); % bias weight to output layer
% =============Add bias node to Input layer========
Input=cat(2,Input,bias);
Err=10;
while (Err >Epsi && m < Gen)
%% Forward probagation:
Vp=Input*W1;
Vp=1./(1+exp(-Vp));
Yhat=bias1+Vp*X;
SSEnew=sum(abs(Y-Yhat).^2,1);
%% Backward probagation:
Yerr=Y-Yhat;
bias1=bias1+mu*sum(Yerr);
W1=W1+mu*(Input.')*(Yerr*(X.').*Vp.*(1-Vp));
X=X+mu*(Yerr.'*Vp).';
%% Update:
m=m+1;
mu=A/(B+m);
%% Calculate Sum Squared Error:
Err=abs(SSEnew-SSEold);
SSEold=SSEnew;
end
%% plot
figure1=figure;
grid on
plot(Y)
hold on
plot(Yhat)

Sign in to comment.

More Answers (0)

Products


Release

R2018b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!