2nd order ode using euler method
13 views (last 30 days)
Show older comments
The following second-order ODE is considered to be stiff: d2y/dx2=−1001dy/dx−1000?
initial conditions are: y(0)=1 and ?′(0)=0
What to solve the ODE using Euler’s method with implicit function.
I implemetd the above question using matlab. But implemented code gives this error.
I attached the code. Can anyone suggest me about the bug of this code?.
function dy = dpnon(t, y)
dy = [y(2);-1000*y(1)-1001*y(2)];
end
function [x,y]=euler_explicit(f,xinit,yinit,xfinal,h)
n=(xfinal-xinit)/h;
% Initialization of x and y as column vectors
x=[xinit zeros(1,n)]; y=[yinit zeros(1,n)];
% Calculation of x and y
for i=1:n
x(i+1)=x(i)+h;
y(i+1)=y(i)+h*f(x(i),y(i));
end
end
xinit=0;
xfinal=3;
yinit=0;
h=.5;
euler_explicit(@dpnon,xinit,yinit,xfinal,h)
0 Comments
Accepted Answer
Torsten
on 26 Nov 2018
Edited: Torsten
on 27 Nov 2018
function main
xinit = 0;
xfinal = 3;
yinit = [1 0];
h = .5;
[x,y] = euler_explicit(@dpnon,xinit,yinit,xfinal,h)
plot(x,y(:,1))
end
function [x,y]=euler_explicit(f,xinit,yinit,xfinal,h)
n = (xfinal-xinit)/h;
% Initialization of x and y as column vectors
x = [xinit;zeros(n,1)];
y = [yinit;zeros(n,2)];
% Calculation of x and y
for i = 1:n
x(i+1) = x(i) + h;
y(i+1,:) = y(i,:) + h*f(x(i),y(i,:));
end
end
function dy = dpnon(t, y)
dy = [y(2),-1000*y(1)-1001*y(2)];
end
0 Comments
More Answers (0)
See Also
Categories
Find more on Ordinary Differential Equations in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!