implementation for iterative wiener filter
11 views (last 30 days)
Show older comments
This is my implementation in the iterative wiener filter in this paper : http://www.tsc.uc3m.es/~navia/LATDS07/IterativeWienerFilter.pdf
I wish it will help anyone
function wiener()
clc;
clear;
f=im2double(rgb2gray(imread('lena.jpg')));
imshow(f);
f=imresize(f,[32 32]);
figure,imshow(f)
[r c]=size(f);
h=fspecial('average');
g=imfilter(f,h,'circular');
s_avg = sum(sum(f))/(r*c);
SNR=90;
n_sigma=s_avg/(10^(SNR/20));
n=n_sigma*randn(size(f));
g=g+n;
[Nf,Mf]=size(g);
[Nh,Mh]=size(h);
L1=floor(Nh/2);
L2=floor(Mh/2);
H=zeros(Nf*Mf);
k=1;
for row=1:Mf,
for col=1:Nf,
hh=zeros(Nf,Mf);
hh(1:Nh,1:Mh)=h;
hh=circshift(hh,[col-1-L1,row-1-L2]);
H(k,:)=hh(:)';
k=k+1;
end
end
%%make vector of m^2*1 of the f,n,g
f=reshape(f',size(f,1)*size(f,2),1);
g=reshape(g',size(g,1)*size(g,2),1);
n=reshape(n',size(n,1)*size(n,2),1);
%%%calculate the autocorrelation matrix of f ,g,n
u=mean(g);
g1=autom(g-u);
Rg=toeplitz(g1);
n1=autom(n);
Rn=toeplitz(n1);%%%%%
Rf=Rg;
steps=10;
mse=zeros(1,steps);
for i=1:steps
B=Rf*H'*inv( (H*Rf*H') +Rn);
fHat=B*(g);
Rf=B*Rg*B';
im=reshape(fHat,[32 32]);
g=reshape(g,[32 32]);
%figure,imshow(im',[]);
mse(1,i) = sum(sum((im(:)-g(:))));
g=reshape(g',size(g,1)*size(g,2),1);
end
t=1:steps;
mse
plot(t,mse);
end
function [Rxx]=autom(x)
N=length(x);
Rxx=zeros(1,N);
for m=1: N+1
for n=1: N-m+1
Rxx(m)=(Rxx(m)+x(n)*x(n+m-1))/N-m+1;
end;
end
end
2 Comments
Walter Roberson
on 1 Aug 2012
Please read the guide to tags and retag this; see http://www.mathworks.co.uk/matlabcentral/answers/43073-a-guide-to-tags
Answers (0)
See Also
Categories
Find more on Logical in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!