Convergence of Heat Equation?

1 view (last 30 days)
Qudsiya  Irum
Qudsiya Irum on 23 Apr 2019
%% Ut=Uxx,
%%solution: U(x,t)=sin(2*pi*x)*exp(-(2*pi).^2*t),
%%I.C : U(x,0)= sin(2*pi*x)
%%B.C: U(0,t)=U(1,t)=0,
L = 1 ; %Length of Domain
t_final = 0.1; % time limit
N = 32; % no of elements
dx = 1/N; % step size
dt = 0.001
% x = 0:dx:L; %spatial discretization
x = linspace(0,L,N+1);
t = 0:dt:t_final; %temporal discretization
a= length(x);
b = length(t);
U = zeros(1,b);
W = zeros(a,b);
X = sin(2*pi*x);
W(:,1) =X;
W(:, b)=0;
% t=0;
T = zeros(b,1);
T(1) = 0;
for i=1:length(t)
T= T+dt;
U = sin(2*pi*x)*(exp((-(2*pi).^2)*T(i,:)));
W(:,i) = U;
X = U;
U(1) =0;
U(end)=0;
T(i) = T(1);
figure(1)
plot(x,U)
hold on
end
%% Backward Euler for FEM solution
xx = linspace(0,L,N+1); %Fem spatial discretization
% xx = 0:dx:L;
nx = length(xx); %total nodes
M = spdiags([(dx/6)*ones(nx,1), (2*dx/3)*ones(nx,1), (dx/6)*ones(nx,1)],[-1, 0,1],nx,nx) ; %% Mass matrix
A = spdiags([(-1/dx)*ones(nx,1), (2/dx)*ones(nx,1), (-1/dx)*ones(nx,1)],[-1, 0, 1],nx,nx) ;%% Stiffness matrix
delta_t = 0.001;
m = t_final/delta_t;
delta_t = t_final/m;
tspan = 0:delta_t:t_final;
% store solution for each time in matrix u
u = zeros(nx,m+1);
tvec = zeros(1,m+1);
U_tk = sin(2*pi*xx);
u(:,1) = U_tk;
tt = 0 ;
tvec(1) = tt;
tt = 0;
b = zeros(1,nx); % Neumann boundary condition
b(nx) = 0;
for nt = 1:m
tt = tt+delta_t;
c = U_tk + b;
w = (M+delta_t*A)\M;
FEM = c*w;
FEM(1) = 0;
FEM(end)= 0;
u(:, nt) = FEM;
% for next time step:
U_tk = FEM;
tvec(nt) = tt;
figure(2)
plot(xx,FEM)
end
plot(x,U-FEM); )
ERROR = sqrt(sum( dx*(U-FEM).^2 ))

Answers (0)

Categories

Find more on Heat and Mass Transfer in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!