Find the intersection point between 2 curves

2 views (last 30 days)
Hi there!
I'm a new matlab user so I don't know all its features.
I'm having trouble in finding the intersection point between two curves (I_moon and Moon_ref). Can you help me?
This is my code:
%------------------------------------------------------------------------%
%------------------------------------------------------------------------%
%-----------------Average radiance emitted and reflected-----------------%
%------------------------------------------------------------------------%
%------------------------------------------------------------------------%
%Target: Moon;
%Atmosphere and surface: no atmosphere;
%Surface temperature: 130 K;
%Albedo: 0.136;
%Wavelength range: 0-50 μm;
%Data from: nasa.gov
clear all;
close all;
clear global;
clc
%--------------------------------Costants--------------------------------%
c=2.998*10^8; % speed of light in vacuum
h=6.6261*10.^-34; % Planck constant
k=1.38*10.^-23; % Boltzmann constant
sigma=5.67*(10^-8); %Stephen-Boltzmann constant
L=(0.0:0.01:50); %wavelength (μm)
T=130; %Moon average temperature (K)
albedo=0.136; %Moon albedo (ad)
d=1; %Sun-Moon distance (AU)
R=1737.1; %Moon average radius (km)
r=4.66e-3; %Sun radius (AU)
T_sun=5777; %Sun average temperature (K)
Fs=1366; %Solar constant at 1 AU (W/m^2)
%----------------------------Radiance emitted----------------------------%
I_sun=3.742./((L.^5).*(exp(1.439e4./(L.*5777))-1));
I_moon=3.742./((L.^5).*(exp(1.439e4./(L.*130))-1));
%---------------------------Radiance reflected---------------------------%
Moon_ref=albedo*((r^2)/(1^2))*I_sun;
%------------------------------Absorptance-------------------------------%
F=Fs*(1./(d.^2)); %Solar constants for Moon=1366 (W/(m^2))
Rad_intercepted=F.*pi.*((R.*(10^3)).^2); %Solar radiation intercepted by Moon=1.295 (W)
Rad_absorbed=F.*(1-albedo).*pi.*((R.*(10^3)).^2); %Radiation absorbed: Moon=1.1188e+16 (W)
Abs=Rad_absorbed./Rad_intercepted; %Absorptance values for: Moon=0.864
%---------------------------Total radiance-------------------------------%
ToT_moon=Moon_ref+(Abs*I_moon);
figure4 = figure;
axes1 = axes('Parent',figure4);
hold(axes1,'on');
ylabel({'Radiance'});
xlabel({'wavelength (μm)'});
title({'Moon','(130K)'});
xlim(axes1,[1 20]);
ylim(axes1,[1e-30 1]);
set(axes1,'YMinorTick','on','YScale','log');
plot(L,I_moon,'Color',[0 0 1]);
hold on
plot(L,Moon_ref,'Color',[1 0 0]);
plot(L,ToT_moon,'Color',[0 0 0]);
hold off;
legend({'Emitted','Reflected','Total'},'Location','southeast');

Answers (1)

Stephan
Stephan on 6 May 2019
create a function handle depending from wave length, that subtracts both from each other. this is the objective function for using fzero function. As result you get the interception wave length.
  1 Comment
Antonio Sepe
Antonio Sepe on 7 May 2019
Hi! Thanks for the answer.
I tried to use fzero funcion but it didn't work.
I solved the problem by using polyxpoly, in this way (consider data in my question):
[xint,yint] = polyxpoly(L,I_moon,L,Moon_ref);
figure4 = figure;
axes1 = axes('Parent',figure4);
hold(axes1,'on');
ylabel({'Radiance'});
xlabel({'wavelength (μm)'});
title({'Moon','(130K)'});
xlim(axes1,[1 20]);
ylim(axes1,[1e-30 1]);
set(axes1,'YMinorTick','on','YScale','log');
plot(L,I_moon,'Color',[0 0 1]);
hold on
plot(L,Moon_ref,'Color',[1 0 0]);
plot(L,ToT_moon,'Color',[0 0 0]);
mapshow(xint,yint,'Displaytype','point','Marker','o');
legend({'Emitted','Reflected','Total','λ equiv.'},'Location','southeast');
hold off
Thx anyway :)

Sign in to comment.

Categories

Find more on Weather and Atmospheric Science in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!