Clear Filters
Clear Filters

Change type lines in diagram in matlab

1 view (last 30 days)
Dear everyone,
I have code in matlab, in which I want to build diagram. I built but lines in diagram wasn't like as I want. I want to these lines have smooth curve, I tried to do this but I've still not got it. Please help me this. Code is presented below. Many thanks.
Best Regards and Happy new year to everyone.
L=27.9;
B=7.2;
T=2.65;
H=3.49;
delta=0.55;
alpha=0.80;
beta=0.84;
kz=0.6;
h0=2*B*sqrt(((1.017+0.023)*alpha/(alpha+delta))*((1.06+0.05)*alpha^2/12/delta))-kz*H;
te=[0 10 20 30 40 50 60 70 80 90];
Hte1=[0 0.050 0.387 0.840 1.279 1.365 1.056 0.583 0.210 0];
Hte2=[0 -0.036 -0.241 -0.556 -0.722 -0.513 0.026 0.603 0.935 1.000];
Hte3=[0 0.151 0.184 0.081 -0.069 -0.155 -0.135 -0.062 -0.010 0];
Hte4=[0 0.010 0.062 0.135 0.155 0.069 -0.081 -0.184 -0.151 0];
for i=1:90;
fte1(i)=interp1(te,Hte1,i);
fte2(i)=interp1(te,Hte2,i);
fte3(i)=interp1(te,Hte3,i);
fte4(i)=interp1(te,Hte4,i);
lst(i)=0.5*B*(1-0.972*T/H)*fte1(i)+0.64*(1-1.032*T/H)*H*fte2(i)+1/11.4*...
(alpha*B)^2/delta/T*fte3(i)+1/11.4*(alpha*B)^2/delta/T*((0.64*(1-1.032*T/H)*H)/...
(0.5*B*(1-0.972*T/H)))^3*fte4(i)-(kz*H-alpha/(alpha+delta)*T)*sin(i*pi/180);
end
ls=lst(max(lst)==lst);
tkr=find((lst)==ls);
for i=1:120;
fte1(i)=interp1(te,Hte1,i);
fte2(i)=interp1(te,Hte2,i);
fte3(i)=interp1(te,Hte3,i);
fte4(i)=interp1(te,Hte4,i);
lst1(i)=0.5*B*(1-0.972*T/H)*fte1(i)+0.64*(1-1.032*T/H)*H*fte2(i)+1/11.4*...
(alpha*B)^2/delta/T*fte3(i)+1/11.4*(alpha*B)^2/delta/T*((0.64*(1-1.032*T/H)*H)/...
(0.5*B*(1-0.972*T/H)))^3*fte4(i)-(kz*H-alpha/(alpha+delta)*T)*sin(i*pi/180);
if lst1(i)<0
disp(['u1=', num2str(lst1(i))]);
u2=find((lst1)==(lst1(i)));
break
end
end
for i=10:90;
fte1(i)=interp1(te,Hte1,i);
fte2(i)=interp1(te,Hte2,i);
fte3(i)=interp1(te,Hte3,i);
fte4(i)=interp1(te,Hte4,i);
lstd(i)=0.5*B*(1-0.972*T/H)*fte1(i)+0.64*(1-1.032*T/H)*H*fte2(i)+1/11.4*...
(alpha*B)^2/delta/T*fte3(i)+1/11.4*(alpha*B)^2/delta/T*((0.64*(1-1.032*T/H)*H)/...
(0.5*B*(1-0.972*T/H)))^3*fte4(i)-(kz*H-alpha/(alpha+delta)*T)*sin(i*pi/180);
end
ls0=0;
ls10=lstd(10);
ls20=lstd(20);
ls30=lstd(30);
ls40=lstd(40);
ls50=lstd(50);
ls60=lstd(60);
ls70=lstd(70);
ls80=lstd(80);
ls90=lstd(90);
X=0.0873;
l0=ls0*X;
l10=ls10*X;
l20=(2*ls10+ls20)*X;
l30=(2*ls10+2*ls20+ls30)*X;
l40=(2*ls10+2*ls20+2*ls30+ls40)*X;
l50=(2*ls10+2*ls20+2*ls30+2*ls40+ls50)*X;
l60=(2*ls10+2*ls20+2*ls30+2*ls40+2*ls50+ls60)*X;
l70=(2*ls10+2*ls20+2*ls30+2*ls40+2*ls50+2*ls60+ls70)*X;
l80=(2*ls10+2*ls20+2*ls30+2*ls40+2*ls50+2*ls60+2*ls70+ls80)*X;
l90=(2*ls10+2*ls20+2*ls30+2*ls40+2*ls50+2*ls60+2*ls70+2*ls80+ls90)*X;
kr=[0 10 20 30 40 50 60 70 80 90];
M1=[ls0 ls10 ls20 ls30 ls40 ls50 ls60 ls70 ls80 ls90];
M2=[l0 l10 l20 l30 l40 l50 l60 l70 l80 l90];
Fp0 = griddedInterpolant(kr,M1);
funp0 = @(t) Fp0(t);
Fp3=griddedInterpolant(kr,M2);
funp3 = @(t) Fp3(t);
plot(kr, funp0(kr),kr,funp3(kr),'linewidth',1.5);
grid on
xlabel('heel angel')
ylabel('arm')
legend('ls','ld','Location','northwest')
title('Diagram stability')
hold on;

Accepted Answer

Csaba
Csaba on 31 Dec 2019
Edited: Csaba on 31 Dec 2019
I do not really understand your goal. What you are doing is plotting ten pairs of numbers. . What do you mean on "smooth"? The ten points are quite "smooth" by themselves. You can interpolate or spline the points between them, but you are linear interpolating and then choosing the same points all the time.
I do not understand either what are the main data you want to plot? If you want to plot, let's say M1 vs. kr and interpolate at every integer between them, then this command will do:
plot(kr,M1,'x',0:90, interp1(kr,M1,[0:90],'spline'),'-');
If you specify more exactly the question we can give you better answer.
Csaba
  1 Comment
Dam Tung
Dam Tung on 1 Jan 2020
Thank sir very much for your answer. You understood right my goal. Best regards.
Dam Tung

Sign in to comment.

More Answers (0)

Categories

Find more on Interpolation in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!