Solution of Recurrence relation to find a series expression

3 views (last 30 days)
syms x k r f(x) g(x) a b beta b1 M L
syms F(k) G(k)
F(0)=0;F(1)=1;F(2)=a/2;G(0)=0;G(1)=1/2;G(2)=b/2;b1=1/beta;
%%%%dnf=diff(f,x,n)
d1f=(k+1)*F(k+1);d2f=(k+1)*(k+2)*F(k+2);d3f=(k+1)*(k+2)*(k+3)*F(k+3);
d1g=(k+1)*G(k+1);d2g=(k+1)*(k+2)*G(k+2);d3g=(k+1)*(k+2)*(k+3)*G(k+3);
fd2f=symsum(((k-r+1)*(k-r+2)*F(r)*F(k-r+2)),r,0,k);%%% f*d2f
gd2g=symsum((k-r+1)*(k-r+2)*G(r)*G(k-r+2),r,0,k);fd2g=symsum((k-r+1)*(k-r+2)*F(r)*G(k-r+2),r,0,k);
gd2f=symsum((k-r+1)*(k-r+2)*G(r)*F(k-r+2),r,0,k); d1fd1f=symsum((k-r+1)*(r+1)*F(r+1)*F(k-r+1),r,0,k); %%(d1f)^2
d1gd1g=symsum((k-r+1)*(r+1)*G(r+1)*G(k-r+1),r,0,k);
%%%%%%%
eqn1=simplify((1+b1)*d3f-d1fd1f+fd2f+gd2f-(M+L)*d1f==0);
eqn2=simplify((1+b1)*d3g-d1gd1g+fd2g+gd2g-(M+L)*d1g);eqns=[eqn1 eqn2];
solve([eqns,{F(k+3),G(k+2)}])
f=sum(x^k*F(k),k,0,inf);g=sum(x^k*G(k),k,0,inf);
%%%%%%%%%
Using the above code (ofcourse after modification), I want to solve the recurrence relations {F(k+3),G(k+2)} which contains series expression
and using given condition (F(0)=0;F(1)=1;F(2)=a/2;G(0)=0;G(1)=1/2;G(2)=b/2;) to find f and g (SERIES FORM)
OR
the attched pdf (similar problem) can be followed
Thanks

Answers (0)

Categories

Find more on Mathematics in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!