How can use parallel programming in the below code?
2 views (last 30 days)
Show older comments
Hello. The below code calculates a PDE equation. I'd like to use parallel to speed up in finer discritization.
How is it possible to use parallel in this structure ?
Thanks.
clc
close all
%Time
delt=0.2;
totalTime = 1e3;
timestepn=round(totalTime/delt);%size(delt,2);
% parameters
L=0.29;
gamma=3;
kappa=2;
% geometry settings; % phase field numbers
mboxsize=64; % system grid numbers in x direction
nboxsize=64; % system grid numbers in y direction
delx=2; % Delta x
Nx=mboxsize;
Ny=Nx;
dx=delx;
dy=delx;
% calculation-loading data
load etas
ngrain=25;
eta2 = zeros(Nx,Ny,ngrain);
eta = etas;
eta2 = eta;
p=ngrain;
%evolution
for tn=1:10
for i=1:mboxsize
for j=1:nboxsize
% calculation of nabla square eta(Laplacian)
del2=1/delx^2*(0.5*(eta(indg(i+1,nboxsize),j,:)-2*eta(i,j,:)+eta(indg(i-1,nboxsize),j,:))...
+0.25*(eta(indg(i+2,nboxsize),j,:)-2*eta(i,j,:)+eta(indg(i-2,nboxsize),j,:)))...
+1/delx^2*(0.5*(eta(i,indg(j+1,mboxsize),:)-2*eta(i,j,:)+eta(i,indg(j-1,mboxsize),:))...
+0.25*(eta(i,indg(j+2,mboxsize),:)-2*eta(i,j,:)+eta(i,indg(j-2,mboxsize),:)));
% summation
sumterm=eta(i,j,:)*sum(eta(i,j,:).^2)-eta(i,j,:).^3;
detadtM=(-eta(i,j,:)+eta(i,j,:).^3-kappa*del2);
detadt=-L*(detadtM+2*gamma*(sumterm));
eta2(i,j,:)=eta(i,j,:)+delt*detadt;
% for making sure eta is not outside the equilibrium values
% actually it is unnecessary
for pind=1:p
if eta2(i,j,pind)>1
eta2(i,j,pind)=1;
end
if eta2(i,j,pind)<0
eta2(i,j,pind)=0;
end
end
end
end
eta=eta2;
phi=sum(eta(:,:,1:p).^2,3);
imagesc(phi)
colorbar
title(tn)
waitbar(tn/10)
end
0 Comments
Answers (1)
Thiago Henrique Gomes Lobato
on 12 Jan 2020
You can indeed try to do the code in parallel with a parfor loop in the "i" loop and some tweak in the eta2 variable bound like this:
clc
close all
%Time
delt=0.2;
totalTime = 1e3;
timestepn=round(totalTime/delt);%size(delt,2);
% parameters
L=0.29;
gamma=3;
kappa=2;
% geometry settings; % phase field numbers
mboxsize=64; % system grid numbers in x direction
nboxsize=64; % system grid numbers in y direction
delx=2; % Delta x
Nx=mboxsize;
Ny=Nx;
dx=delx;
dy=delx;
% calculation-loading data
load etas
ngrain=25;
eta2 = zeros(Nx,Ny,ngrain);
eta = etas;
eta2 = eta;
p=ngrain;
%evolution
for tn=1:10
parfor i=1:mboxsize
for j=1:nboxsize
% calculation of nabla square eta(Laplacian)
del2=1/delx^2*(0.5*(eta(indg(i+1,nboxsize),j,:)-2*eta(i,j,:)+eta(indg(i-1,nboxsize),j,:))...
+0.25*(eta(indg(i+2,nboxsize),j,:)-2*eta(i,j,:)+eta(indg(i-2,nboxsize),j,:)))...
+1/delx^2*(0.5*(eta(i,indg(j+1,mboxsize),:)-2*eta(i,j,:)+eta(i,indg(j-1,mboxsize),:))...
+0.25*(eta(i,indg(j+2,mboxsize),:)-2*eta(i,j,:)+eta(i,indg(j-2,mboxsize),:)));
% summation
sumterm=eta(i,j,:)*sum(eta(i,j,:).^2)-eta(i,j,:).^3;
detadtM=(-eta(i,j,:)+eta(i,j,:).^3-kappa*del2);
detadt=-L*(detadtM+2*gamma*(sumterm));
eta2(i,j,:)=eta(i,j,:)+delt*detadt;
end
end
% for making sure eta is not outside the equilibrium values
% actually it is unnecessary
eta2(eta2>1) = 1;
eta2(eta2<0) = 0;
eta=eta2;
phi=sum(eta(:,:,1:p).^2,3);
imagesc(phi)
colorbar
title(tn)
waitbar(tn/10)
end
I however don't think this is the best solution, since the only loop you actually need to calculate is the time on. If you substitute your i and j loops for vector operations (calculate all matrix values at once) it will probably be way faster than the parallelization and your problem will have only one loop.
3 Comments
Thiago Henrique Gomes Lobato
on 12 Jan 2020
In your new example you're looping for "i" and then replacing it inside the loop
See Also
Categories
Find more on General PDEs in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!