Dropout Layer Before Fully connected Layer
4 views (last 30 days)
Show older comments
Abdussalam Elhanashi
on 17 Jan 2020
Commented: Abdussalam Elhanashi
on 26 Jan 2020
Hi guys
I am asking if it is possible to make dropout layer before FC layer
Example below:-
layers = [
imageInputLayer([64 64 3],"Name","imageinput","Normalization","none")
convolution2dLayer([5 5],4,"Name","conv_1","Padding","same")
reluLayer("Name","relu_1")
maxPooling2dLayer([2 2],"Name","maxpool_1","Padding","same","Stride",[2 2])
convolution2dLayer([3 3],8,"Name","conv_2","Padding","same")
reluLayer("Name","relu_2")
maxPooling2dLayer([2 2],"Name","maxpool_2","Padding","same","Stride",[2 2])
convolution2dLayer([3 3],32,"Name","conv_3","Padding","same")
reluLayer("Name","relu_3")
averagePooling2dLayer([2 2],"Name","avgpool2d_1","Padding","same","Stride",[2 2])
convolution2dLayer([3 3],64,"Name","conv_4","Padding","same")
reluLayer("Name","relu_4")
averagePooling2dLayer([2 2],"Name","avgpool2d_2","Padding","same","Stride",[2 2])
dropoutLayer(0.51,'Name','drop1')
fullyConnectedLayer(2,"Name","fc")
softmaxLayer("Name","softmax")
classificationLayer("Name","classoutput")];
Best,
0 Comments
Accepted Answer
Shashank Gupta
on 20 Jan 2020
Hi Abdussalam,
Yes, you can use Dropout layer before the fully connected layer, Dropout is just a regularization technique for preventing overfitting in the network, it can be applied anywhere regardless of FC or Conv but again it is generally recommended to use it after FC layer because they are the ones with the greater number of parameter and thus they are likely to excessively co-adapting themselves causing Overfitting.
However, it’s a stochastic regularization technique, you can really place it everywhere. Usually placed on the layer with a greater number of parameters, but no denies you from applying anywhere.
More Answers (0)
See Also
Categories
Find more on Web Services in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!