Effect of templateSVM('Standardize',true);
3 views (last 30 days)
Show older comments
Dear all,
Is there any documentation that explains the advantage of using
t = templateSVM('Standardize',true)
when using
classifier = fitcecoc(featuresTrain,YTrain,'Learners',t);
Because in my case it provides a better classification result, but need to understand some basics on how it works.
Any comment is appreciated.
Meshoo
3 Comments
c
on 2 Oct 2020
%% template = templateSVM('Standardize',true)
% 'BoxConstraint' — 1 (default)
% 'CacheSize' — 1000 (default)
% 'ClipAlphas' — true (default)
% 'DeltaGradientTolerance' — 0 if the solver is ISDA (for example, you set 'Solver','ISDA')
% 'GapTolerance' -0 (default)
% 'IterationLimit' — 1e6 (default)
% 'KernelFunction' — 'linear' Linear kernel, default for two-class learning
% 'KernelOffset' -0.1 if the solver is ISDA (that is, you set 'Solver','ISDA')
% 'KernelScale' — 1 (default)
% 'KKTTolerance' — Karush-Kuhn-Tucker complementarity conditions violation tolerance
% 1e-3 if the solver is ISDA (for example, you set 'Solver','ISDA')
% 'NumPrint' — 1000 (default)
% 'OutlierFraction' —0 (default)
% 'SaveSupportVectors' —true (default) Store support vectors, their labels, and the estimated α coefficients
% 'ShrinkagePeriod' — 0 (default)
% 'Solver' — The default value is 'ISDA'
% 'Standardize' — false (default)
% 'Verbose' — 0 (default)
c
on 2 Oct 2020
template = templateSVM('Standardize',true)-->
it means using all the default values.
Answers (0)
See Also
Categories
Find more on Classification Ensembles in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!