Error using ODE45
1 view (last 30 days)
Show older comments
Hello everyone,
I used the ODE function to solve a set of differential equations in which a torque was implied (see in the code line1--->line129) and the simulation was made for different values of the torque. After that, i decide to add another stage at my simulation and turn off my moment/torque at a certain time (700s). To do this, i tried to define the torque as an input function but in the command window, an error appears, the function u seems not to be defined.
Undefined function or variable 'u'.
Error in Ryelandt_288861_Assignment2>@(t,x)mydyn(t,x,myinput(t,u(1)))
Error in odearguments (line 90)
f0 = feval(ode,t0,y0,args{:}); % ODE15I sets args{1} to yp0.
Error in ode45 (line 115)
odearguments(FcnHandlesUsed, solver_name, ode, tspan, y0, options, varargin);
Error in Ryelandt_288861_Assignment2 (line 134)
[~,Xout11] = ode45(@(t,x)mydyn(t,x,myinput(t,u(1))),xx,IC1,opts);
tic;
%% ME - 221 Dynamical systems, Spring 2020
% Solution to MATLAB Assignment #2
% Student Name: Ryelandt Guillaume
% SCIPER 288861
% Submission date: 10 April 2020
%% Initiate the script
clc; clear; close all
%% Question 3 a
%initial conditions
xx = linspace(0,1000,1e3).';
M=[5,15,25,55]; %[Nm]
IC1=[298; 298; 0; 0];
opts= odeset('RelTol',1e-8,'AbsTol',1e-10);
[~,Xout1] = ode45(@(t,x)mydyn(t,x,M(1)),xx,IC1,opts);
[~,Xout2] = ode45(@(t,x)mydyn(t,x,M(2)),xx,IC1,opts);
[~,Xout3] = ode45(@(t,x)mydyn(t,x,M(3)),xx,IC1,opts);
[~,Xout4] = ode45(@(t,x)mydyn(t,x,M(4)),xx,IC1,opts);
%data visualisation
%for m=5
figure(1);
plot(xx,Xout1(:,1),'linewidth',2,'displayName','M= 5 Nm');
xlabel('$t$(s)','interpreter','Latex')
ylabel('$T$(K)','interpreter','Latex')
set(gca,'FontSize',11)
hold on;
plot(xx,Xout2(:,1),'linewidth',2,'displayName','M= 15 Nm');
plot(xx,Xout3(:,1),'linewidth',2,'displayName','M= 25 Nm');
plot(xx,Xout4(:,1),'linewidth',2,'displayName','M= 55 Nm');
lgd=legend;
% [Xs,YS]=ginput(4);
hold off;
%% Question 3 b
figure(2);
Xout1norm=normalize(Xout1(:,1),'range');
Xout2norm=normalize(Xout2(:,1),'range');
Xout3norm=normalize(Xout3(:,1),'range');
Xout4norm=normalize(Xout4(:,1),'range');
plot(xx,Xout1norm,'linewidth',2,'displayName','M= 5 Nm');
xlabel('$t$(s)','interpreter','Latex')
ylabel('$T$(K)','interpreter','Latex')
set(gca,'FontSize',11)
hold on;
plot(xx,Xout2norm,'linewidth',2,'displayName','M= 15 Nm');
plot(xx,Xout3norm,'linewidth',2,'displayName','M= 25 Nm');
plot(xx,Xout4norm,'linewidth',2,'displayName','M= 55 Nm');
lgd=legend;
hold off;
% yyaxis right
% plot(tt,Xout1(:,2),'linewidth',2);
% ylabel('$\dot{x}$(m/s)','interpreter','Latex')
% set(gca,'FontSize',11)
% set(gcf,'color','w','units','centimeters','outerposition',[5 5 15 10])
%% Question 3 c
figure(3);
plot(xx,Xout1(:,4),'linewidth',2,'displayName','M= 5 Nm');
xlabel('$t$(s)','interpreter','Latex')
ylabel('$v$(rad/s)','interpreter','Latex')
set(gca,'FontSize',11)
hold on;
plot(xx,Xout2(:,4),'linewidth',2,'displayName','M= 15 Nm');
plot(xx,Xout3(:,4),'linewidth',2,'displayName','M= 25 Nm');
plot(xx,Xout4(:,4),'linewidth',2,'displayName','M= 55 Nm');
lgd=legend;
hold off;
figure(4);
Xout1norm=normalize(Xout1(:,4),'range');
Xout2norm=normalize(Xout2(:,4),'range');
Xout3norm=normalize(Xout3(:,4),'range');
Xout4norm=normalize(Xout4(:,4),'range');
figure (4);
plot(xx,Xout1norm,'linewidth',2,'displayName','M= 5 Nm');
xlabel('$t$(s)','interpreter','Latex')
ylabel('$v$(rad/s)','interpreter','Latex')
set(gca,'FontSize',11)
hold on;
plot(xx,Xout2norm,'linewidth',2,'displayName','M= 15 Nm');
plot(xx,Xout3norm,'linewidth',2,'displayName','M= 25 Nm');
plot(xx,Xout4norm,'linewidth',2,'displayName','M= 55 Nm');
lgd=legend;
hold off;
%% Question 3 d
RelError1=100*abs((Xout1(:,2)-Xout1(:,1))./(Xout1(:,1)));
RelError2=100*abs((Xout2(:,2)-Xout2(:,1))./(Xout2(:,1)));
RelError3=100*abs((Xout3(:,2)-Xout3(:,1))./(Xout3(:,1)));
RelError4=100*abs((Xout4(:,2)-Xout4(:,1))./(Xout4(:,1)));
figure (5);
plot(xx,RelError1,'linewidth',2,'displayName','M= 5 Nm');
xlabel('$t$(s)','interpreter','Latex')
ylabel('$Relative Error(\%)$','interpreter','Latex')
set(gca,'FontSize',11)
hold on;
plot(xx,RelError2,'linewidth',2,'displayName','M= 15 Nm');
plot(xx,RelError3,'linewidth',2,'displayName','M= 25 Nm');
plot(xx,RelError4,'linewidth',2,'displayName','M= 55 Nm');
lgd=legend;
toc;
%%
xx = linspace(0,1000,1e3).';
IC1=[298; 298; 0; 0];
opts= odeset('RelTol',1e-8,'AbsTol',1e-10);
[~,Xout11] = ode45(@(t,x)mydyn(t,x,myinput(t,u(1))),xx,IC1,opts);
[~,Xout21] = ode45(@(t,x)mydyn(t,x,myinput(t,u(2))),xx,IC1,opts);
[~,Xout31] = ode45(@(t,x)mydyn(t,x,myinput(t,u(3))),xx,IC1,opts);
[~,Xout41] = ode45(@(t,x)mydyn(t,x,myinput(t,u(4))),xx,IC1,opts);
%% Function definition
function dx = mydyn(t,x,M)
% Define the parameters
Ct= 200; %[J/K]
ht=140; %[W/m^2K]
At=0.02; %[m^2]
he=200; %[W/m^2K]
Ae=pi; %[m^2]
Te= 298; %[K]
V=6*pi; %[m^3]
rho=1; %[kg/m^3]
cp=4200; %[J/kgK]
J=300; %[kgm^2]
c=2; %[Nms]
c3=0.1; %[Nms^3]
cq=0.09; %[Ws^4]
T=x(1);
Tt=x(2);
theta=x(3);
thetadot=x(4);
u=M;
%state model
dT=(V*rho*cp)^-1*(he.*Ae.*(Te-T)+ht*At*(Tt-T)+cq*thetadot^4);
dTt=(ht*At)*(Ct)^-1.*(T-Tt);
dtheta=thetadot;
dthetadot=(M-c*thetadot-c3*thetadot^3)/J;
dx=[dT,dTt,dtheta,dthetadot]';
end
function u=myinput(t,M)
if t<700
u=[5,15,25,55]; %[Nm]
else t>700
u=[0,0,0,0]; %[Nm]
end
end
>>
0 Comments
Answers (2)
darova
on 7 Apr 2020
The name of function is myinput
function u=myinput(t,M)
But you are trying to pass as argument some u
[~,Xout11] = ode45(@(t,x)mydyn(t,x,myinput(t,u(1))),xx,IC1,opts);
You don't call function inside mydyn
u=M; % what is this?
You don't use M argument inside
function u=myinput(t,M)
if t<700
u=[5,15,25,55]; %[Nm]
else t>700
u=[0,0,0,0]; %[Nm]
end
end
here is the solution
3 Comments
darova
on 7 Apr 2020
That's smart!
[~,Xout1] = ode45(@(t,x)mydyn(t,x,M(1)),xx,IC1,opts);
So just add this line inside your mydyn function
Steven Lord
on 7 Apr 2020
A cleaner (IMO) approach would be to solve your system of ODEs with torque applied from time t = 0 to time t = 700. Use the result of that first ode45 call at time t = 700 as the initial condition for a second call to ode45 that solves a system of ODEs without torque from time t = 700 to time t = 1000.
See Also
Categories
Find more on Ordinary Differential Equations in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!