How can get a better Polynomial out of this data?
1 view (last 30 days)
Show older comments
Hello everyone,
I am trying to obtain a sensible polynomial out of the following potted data. It seems to me that the results I am obtaining are not very precise and don' really reflect the curve obtained. Is there another way I could get a better polynomial describing the plotted data?
Thank you in advance.
clear all
close all
clc
x=[0 54 174 250 282 330 355]; % Degrees
y=[98 17.95 46.51 48.37 11.16 74.4 100];%percentage
xx= (0:0.5:360);
s = spline(x,y,xx);
p1=polyfit(xx,s,3);%****
disp(p1)%** not accurate enough!!!
figure;
plot(x,y,'ko',xx,s,'linewidth', 2 );
grid on
xlabel('Angle in Degrees')
ylabel('Velocity Percentage')
set(gca,'XTick',[0:20:360]);
set(gca,'XTickLabel',[0:20:360]);
set(gca,'YTick',[0:10:110]);
set(gca,'YTickLabel',[0:10:110]);
xlim([0 360])
ylim([0 110])
3 Comments
Star Strider
on 11 Apr 2020
My pleasure.
It would be necessary to have a mathematical expression of that system, along with a description of what the data represent and the parameters you want to estimate.
Accepted Answer
John D'Errico
on 11 Apr 2020
Lets be serious here. You have all of 7 data points, which seem to lie at virtually random values.
On top of the data, I've plotted a cubic polynomial fit through the data. Is it reasonable? Perhaps, though apparently not for your purposes.
Perhaps what you need is a shape preserving curve fit through the data points. This can be achieved using pchip, or even interp1, using the correct choice of method. I added that to the plot above, both created using the basic fitting tools on the plot.
But asking us to offer a rational model for the data, purely from that data alone is impossible. Your desciption is wildly inadequate. A spline as I prodiuce here, is probably as much as can be done. In fact, it may well be the case that the best "model" of that process is whatever procedure you have that produced the data.
We do not know if the process that produces this data is noisy. So are those exact, true, repeatable numbers? Are those bumps in the process worth chasing? If so, then you need to use an interpolating tool, and for data like this, pchip is by far the best choice, as a classical spline would do very nasty things to your data.
If you could obtain more data, that would improve your odds of success.
More Answers (0)
See Also
Categories
Find more on Spline Postprocessing in Help Center and File Exchange
Products
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!