Matrix Guru Needed : How to compute a weighted covariance matrix fast

9 views (last 30 days)
Hi,
I'm trying to speed up the function below and have hit a wall. It's a bog standard covariance weighting calculation but is incredibly slow because the calculation is O(n^4).
If this helps for optimisation, I actually call this at every time step of a model such that both matricies below are really of dimension [num_time, num_series, num_series] but I do a for loop over the function. I've often used the great tool below but can't see how to make this one faster
Many math thanks,
Lyle
function Vw = covWeight(V,weights)
% Vw = covWeight(V,weights)
%
% Recompute a covariance matrix based on a set of weightings for each
% row,column
%
% For example, say you want to blend a set of time series X with known
% covariance V into a set of new time series Y such that
%
% Y1 = aX1 + bX2 + cX3
% Y2 = dX1 + eX2 + fX3
% Y3 = gX1 + hX2 + iX3
%
% then the weights would be
%
% [a b c]
% weights = [d e f]
% [g h i]
%
% and the covariance of the new time series would be given by Vw.
%
% DEBUG
% V - covWeight(V, eye(size(V))) == 0
%
% because the weighting is simply the original time series X
%
% ***** This is VERY computationally expensive *********
Vw = nan(size(V));
inplay = abs(weights) >eps('single');
n_a = size(V,1);
for j=1:n_a
for k=j:n_a
a = weights(j,inplay(j,:));
b = weights(k,inplay(k,:));
tmp = a'*b;
Vs = V(inplay(j,:), inplay(k,:));
Vw(j,k) = tmp(:)'*Vs(:);
end
end
% Reflect upper to lower
Vw = triu(Vw,0) + triu(Vw,1)';
end

Answers (1)

Gregory Pelletier
Gregory Pelletier on 27 Jan 2024
Edited: Walter Roberson on 27 Jan 2024
Here is a function that will do it much faster using matrix multiplication instead of for loops:

Categories

Find more on Loops and Conditional Statements in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!