How to activate symbolic math toolbox
255 views (last 30 days)
Show older comments
Symbolic math toolbox
0 Comments
Answers (6)
Ameer Hamza
on 11 May 2020
You can go to this link: https://www.mathworks.com/mwaccount/ and check the toolbox associated with your license.
If you have the Symbolic toolbox, then you can download the MATLAB install it with the symbolic toolbox. If you already have MATLAB installed, then you can click you can click Add-ons and search for the symbolic toolbox and install it.
0 Comments
Vinitha
on 5 Oct 2024
3 Comments
Vinitha
on 5 Oct 2024
Edited: Walter Roberson
on 18 Dec 2025 at 20:42
% Clear workspace and command window
clear; clc;
T==2; %Final time
% Define symbolic variables
syms v(t)
% Define the ODE
ode = diff(v, t) == -0.5*v + sec(t) + tan(v) - (exp(-t) + v + int(v^2, t, 0, t));
% Specify the boundary condition
cond = v(0) == 0;
cond = v(T) == 1;
% Solve the ODE
sol = dsolve(ode, cond);
% Display the exact solution
disp('The exact solution is:');
disp(sol);
Walter Roberson
on 5 Oct 2024
I do not understand how these solutions solve the problem of activating the Symbolic Toolbox ?
Vinitha
on 5 Oct 2024
Edited: Walter Roberson
on 18 Dec 2025 at 20:42
% Ensure the Symbolic Math Toolbox is available
syms v(t)
% Define the ODE
ode = diff(v, t) == -0.5*v + sec(t) + tan(v);
% Specify initial condition
cond = v(0) == 0;
% Solve the ODE
sol = dsolve(ode, cond);
% Display the solution
disp('The exact solution is:');
disp(sol);
% Ensure the Symbolic Math Toolbox is available
syms v(t)
% Define the ODE
ode = diff(v, t) == -0.5*v + sec(t) + tan(v);
% Specify initial condition
cond = v(0) == 0;
% Solve the ODE
sol = dsolve(ode, cond);
% Display the solution
disp('The exact solution is:');
disp(sol);
% Optionally, convert the solution to a function for further use
v_exact = matlabFunction(sol);
1 Comment
Vinitha
on 5 Oct 2024
Moved: Walter Roberson
on 5 Oct 2024
% Clear workspace and command window
clear; clc;
% Define the ODE as a function handle
ode = @(t, v) [-0.5 * v(1) + sec(t)]; % v(1) is v(t)
% Define boundary conditions
bc = @(va, vb) [va(1); vb(1) - 1]; % v(0) = 0 and v(T) = 1
% Define the final time
T = 2;
% Initial guess for v at t = 0 and t = T
initialGuess = [0; 1]; % v(0) = 0 and guess v(T) = 1
% Create a mesh for the solution
tspan = linspace(0, T, 100);
% Solve the boundary value problem
sol = bvp4c(ode, bc, bvpinit(tspan, initialGuess));
% Extract the solution
t = sol.x; % time values
v = sol.y(1, :); % v(t) values
% Display the results
disp('The solution at final time T = 2 is:');
disp(v(end));
% Plot the results
figure;
plot(t, v, 'LineWidth', 2);
xlabel('Time (t)');
ylabel('v(t)');
title('Exact Solution of the ODE');
grid on;
Vinitha
on 5 Oct 2024
Edited: Walter Roberson
on 5 Oct 2024
% Ensure the Symbolic Math Toolbox is available
syms v(t)
% Define the ODE
ode = diff(v, t) == -0.5*v + sec(t) + tan(v);
% Specify initial condition
cond = v(0) == 0;
% Solve the ODE
sol = dsolve(ode, cond);
% Display the solution
disp('The exact solution is:');
disp(sol);
% Optionally, convert the solution to a function for further use
v_exact = matlabFunction(sol);
0 Comments
Vinitha
on 5 Oct 2024
Edited: Walter Roberson
on 5 Oct 2024
% Ensure the Symbolic Math Toolbox is available
syms v(t)
% Define the ODE
ode = diff(v, t) == -0.5*v + sec(t) + tan(v);
% Specify initial condition
cond = v(0) == 0;
% Solve the ODE
sol = dsolve(ode, cond);
% Display the solution
disp('The exact solution is:');
disp(sol);
% Ensure the Symbolic Math Toolbox is available
syms v(t)
% Define the ODE
ode = diff(v, t) == -0.5*v + sec(t) + tan(v);
% Specify initial condition
cond = v(0) == 0;
% Solve the ODE
sol = dsolve(ode, cond);
% Display the solution
disp('The exact solution is:');
disp(sol);
% Optionally, convert the solution to a function for further use
v_exact = matlabFunction(sol)
0 Comments
Vinitha
on 5 Oct 2024
Edited: Walter Roberson
on 18 Dec 2025 at 20:43
% Clear workspace and command window
clear; clc;
T==2; %Final time
% Define symbolic variables
syms v(t)
% Define the ODE
ode = diff(v, t) == -0.5*v + sec(t) + tan(v) - (exp(-t) + v + int(v^2, t, 0, t));
% Specify the boundary condition
cond = v(0) == 0;
cond = v(T) == 1;
% Solve the ODE
sol = dsolve(ode, cond);
% Display the exact solution
disp('The exact solution is:');
disp(sol);
0 Comments
See Also
Categories
Find more on Ordinary Differential Equations in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!