Issues with TensorRT execution
5 views (last 30 days)
Show older comments
Currently I create a Simulink model that calls a mexw64 file that was generated for deep learning with TensorRT, I have no issues to generate the mex file but when I try to execute I have the following message:
Invalid MEX-file 'D:\PhD\ITESO\Clases\10._Semestre_7\IDI_X\Simulation\resNet18SemanticSegmentationRT_mex.mexw64': No se puede
encontrar el módulo especificado.
But the file is present on the same folder. Also when I execute the verification of the setup as follows:
gpuEnvObj = coder.gpuEnvConfig;
gpuEnvObj.BasicCodegen = 1;
gpuEnvObj.BasicCodeexec = 1;
gpuEnvObj.DeepLibTarget = 'tensorrt';
gpuEnvObj.DeepCodeexec = 1;
gpuEnvObj.DeepCodegen = 1;
results = coder.checkGpuInstall(gpuEnvObj)
I have the following:
Compatible GPU : PASSED
CUDA Environment : PASSED
Runtime : PASSED
cuFFT : PASSED
cuSOLVER : PASSED
cuBLAS : PASSED
cuDNN Environment : PASSED
TensorRT Environment : PASSED
Basic Code Generation : PASSED
Basic Code Execution : PASSED
Deep Learning (TensorRT) Code Generation: PASSED
Deep Learning (TensorRT) Code Execution: FAILED (Generated GPU code failed to execute properly with the following error 'Invalid MEX-file 'C:\Users\alis\AppData\Local\Temp\tp22472ee1_cce8_43cd_b782_e5b03357a893\dlEntryPointTest_mex.mexw64': No se puede encontrar el módulo especificado.')
results =
struct with fields:
gpu: 1
cuda: 1
cudnn: 1
tensorrt: 1
basiccodegen: 1
basiccodeexec: 1
deepcodegen: 1
deepcodeexec: 0
tensorrtdatatype: 1
profiling: 0
This is on a Windows 10 machine.
Any idea of waht can be the issue?
0 Comments
Answers (3)
Mikaël LE GRAND
on 23 Oct 2020
Hello,
I also encounter the same problem :
gpuEnvObj = coder.gpuEnvConfig;
gpuEnvObj.BasicCodegen = 1;
gpuEnvObj.BasicCodeexec = 1;
gpuEnvObj.DeepLibTarget = 'tensorrt';
gpuEnvObj.DeepCodeexec = 1;
gpuEnvObj.DeepCodegen = 1;
results = coder.checkGpuInstall(gpuEnvObj)
Compatible GPU : PASSED
CUDA Environment : PASSED
Runtime : PASSED
cuFFT : PASSED
cuSOLVER : PASSED
cuBLAS : PASSED
cuDNN Environment : PASSED
TensorRT Environment : PASSED
Basic Code Generation : PASSED
Basic Code Execution : PASSED
Deep Learning (TensorRT) Code Generation: PASSED
Deep Learning (TensorRT) Code Execution: FAILED (Generated GPU code failed to execute properly with the following error 'Invalid MEX-file 'C:\Users\adm.mle_grand\AppData\Local\Temp\tp05f76285_6ff4_4487_8fca_16965e73b665\dlEntryPointTest_mex.mexw64': Le module spécifié est introuvable.')
results =
struct with fields:
gpu: 1
cuda: 1
cudnn: 1
tensorrt: 1
basiccodegen: 1
basiccodeexec: 1
deepcodegen: 1
deepcodeexec: 0
tensorrtdatatype: 1
profiling: 0
However the specified function (dlEntryPointTest_mex.mexw64) is present in the directory. Is it a problem of TensorRT release problem ?!? For my part, I use TensorRT-5.1.2.2 release :
I tried other releases of TensorRT but the result is always the same via gpucoderSetup command :
Can someone from the staff of Mathworks help us solve this annoying problem ?
0 Comments
Mikaël LE GRAND
on 5 Nov 2020
Hello,
i finally resolve the problem by reading more accuratly the MATLAB documentation. So :
1/ I have installed CUDA Toolkit 10.1 (R2020a compatible) https://developer.nvidia.com/cuda-10.1-download-archive-update2?target_os=Windows&target_arch=x86_64&target_version=10&target_type=exelocal
2/ I have installed CudNN 7.5.0.56 (R2020a compatible) https://developer.nvidia.com/compute/machine-learning/cudnn/secure/v7.5.0.56/prod/10.1_20190225/cudnn-10.1-windows10-x64-v7.5.0.56.zip
3/ I have installed TensorRT 5.1.2.2 (R2020a compatible) https://developer.nvidia.com/nvidia-tensorrt-5x-download (choose TensorRT 5.1 RC version)
4/ I have setted up the environment variables that MATLAB need :
CUDA_PATH : C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1
CUDA_PATH_V10_1 : C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1
NVIDIA_CUDNN : C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\cuda
NVIDIA_TENSORRT : C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\TensorRT-5.1.2.2
NVTOOLSEXT_PATH : C:\Program Files\NVIDIA Corporation\NvToolsExt\
To finish, I add those path to the PATH variable :
- C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\bin
- C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\libnvvp
- C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\cuda\bin
- C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\TensorRT-5.1.2.2\lib
In MATLAB, it gives :
>> gpuEnvObj = coder.gpuEnvConfig('host');
gpuEnvObj.BasicCodegen = 1;
gpuEnvObj.BasicCodeexec = 1;
gpuEnvObj.DeepLibTarget = 'tensorrt';
gpuEnvObj.DeepCodeexec = 1;
gpuEnvObj.DeepCodegen = 1;
gpuEnvObj.Profiling = 1;
coder.checkGpuInstall(gpuEnvObj)
Compatible GPU : PASSED
CUDA Environment : PASSED
Runtime : PASSED
cuFFT : PASSED
cuSOLVER : PASSED
cuBLAS : PASSED
cuDNN Environment : PASSED
TensorRT Environment : PASSED
Profiling Environment : PASSED
Basic Code Generation : PASSED
Basic Code Execution : PASSED
Deep Learning (TensorRT) Code Generation: PASSED
Deep Learning (TensorRT) Code Execution: PASSED
ans =
struct with fields:
gpu: 1
cuda: 1
cudnn: 1
tensorrt: 1
basiccodegen: 1
basiccodeexec: 1
deepcodegen: 1
deepcodeexec: 1
tensorrtdatatype: 1
profiling: 1
>>
I hope this could help...
0 Comments
See Also
Categories
Find more on Get Started with GPU Coder in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!