Matrix multiplication, matrix with variables
3 views (last 30 days)
Show older comments
Hi everyone,
how can I multiply several matrices, if in them there are at least one but maximum 3 variables. (The matrices are actually only two specifc kinds, a tranfer and a refractive matrix one after ithe other.
(I have 2017a version so the symbolic toolbox doesn't work yet)
1 Comment
Rik
on 4 Jun 2020
Can you provide a bit more detailed explanation? What is your input? What is your desired output?
And what have you tried so far?
Accepted Answer
Rik
on 4 Jun 2020
Edited: Rik
on 4 Jun 2020
If this code works, why not use this?
Fin=T_vit*R_lens_post*T_lens*R_lens_ant*T_aqueous*R_cor_post*T_cornea*R_cor_ant;
You also don't need to hard-code all your values:
%Accommodation in Diopters
Acc = 0;
%Radius in mm
cornea_antR = 7.8*10^-3;
cornea_postR = 6.5*10^-3;
lens_ant = 12.0*10^-3 + 0.4*Acc;
lens_post = -5.22*10^-3 + 0.2*Acc;
retina = -13.4*10^-3;
R = table(cornea_antR, cornea_postR, lens_ant, lens_post, retina);
%Index of Refraction
n_cornea = 1.377;
n_aqueous = 1.377;
n_lens = 1.42 + 0.0026*Acc - 0.00022 * Acc^2;
n_vitreous = 1.336;
n_air = 1; %you forgot this one here
N = table(n_cornea, n_aqueous, n_lens, n_vitreous);
%Thickness in mm - distance to the next surface
d_cornea = 0.55*10^-3;
d_aqueous = 2.97*10^-3 - 0.04 * Acc;
d_lens = 3.77*10^-3 + 0.04 * Acc;
d_vitreous = 16.713*10^-3;
D = table(d_cornea, d_aqueous, d_lens, d_vitreous);
%The system:(Arizona eye model ray matrices)
%Free space -> Ref_Cornea_Ant -> Trans_Cornea -> Ref_Cornea_Post ->
%Trans_Aq -> Ref_Lens_ant -> Trans_Lens -> Ref_Lens_Post -> Trans_vitreous
% % (in general)the Transfer matrix indexes [A B; C D]
% A = 1;
% B = d;
% C = 0;
% D = 1;
% % (in general)the Refractive matrix indexes [A B; C D]
% A = 1;
% B = 0;
% C = - (n_2 - n_1)/ (n_2 * R);
% D = (n_1/ n_2);
% T = [1 D; 0 1];
% R = [1 0; - (n_2 - n_1)/ (n_2 * R) (n_1/ n_2) ];
% d = d_vitreous = 16.713*10^-3 m
T_vit = [1 d_vitreous; 0 1];
% n_1 = n_lens = 1.42; n_2 = n_vitreous = 1.336 ; R = lens_post = -5.22*10^-3 m
% - (n_2 - n_1)/ (n_2 * R) = -(1.336 - 1.42 / (1.336*-5.22*10^-3))
% (n_1/ n_2) = 1.42 / 1.336
R_lens_post = [1 0; (-(n_vitreous - n_lens / (n_vitreous*lens_post))) (n_lens / n_vitreous) ];
% d = d_lens = 3.77*10^-3 m
T_lens = [1 d_lens; 0 1];
% n_1 = n_aqueous = 1.377; n_2 = n_lens = 1.42 ; R = lens_ant = 12.0*10^-3m
% - (n_2 - n_1)/ (n_2 * R) = -(1.42 - 1.377 / (1.42 *12.0*10^-3))
% (n_1/ n_2) = (1.377/ 1.42)
R_lens_ant = [1 0; (-(n_lens - n_aqueous / (n_lens *lens_ant))) (n_aqueous/ n_lens) ];
% d = d_aqueous = 2.97*10^-3 m
T_aqueous = [1 d_aqueous; 0 1];
% n_1 = n_cornea = 1.377; ; n_2 = n_aqueous = 1.377; R = cornea_postR = 6.5*10^-3
% - (n_2 - n_1)/ (n_2 * R) = -(1.377 - 1.377 / (1.377 *6.5*10^-3))
% (n_1/ n_2) = (1.377/ 1.377)
R_cor_post = [1 0; (-(n_aqueous - n_cornea / (n_aqueous *cornea_postR))) (n_cornea/n_aqueous) ];
% d = d_aqueous = 2.97*10^-3 m
T_cornea = [1 d_aqueous ; 0 1];
% n_1 = n_air = 1; ; n_2 = n_cornea= 1.377; R = cornea_antR = 7.8*10^-3
% - (n_2 - n_1)/ (n_2 * R) = -(1.377 - 1 / (1.377 *6.5*10^-3))
% (n_1/ n_2) = (1/ 1.377)
R_cor_ant = [1 0; (-(n_cornea - n_air / (n_cornea *cornea_antR))) (n_air/n_cornea)];
Fin=T_vit*R_lens_post*T_lens*R_lens_ant*T_aqueous*R_cor_post*T_cornea*R_cor_ant;
2 Comments
Rik
on 4 Jun 2020
It would probably help with readability if you used a few anonymous functions:
function wrap_in_a_function_to_give_mlint_a_chance_to_warn_about_unused_variables
%Accommodation in Diopters
Acc = 0;
%Radius in mm
cornea_antR = 7.8*10^-3;
cornea_postR = 6.5*10^-3;
lens_ant = 12.0*10^-3 + 0.4*Acc;
lens_post = -5.22*10^-3 + 0.2*Acc;
retina = -13.4*10^-3; %unused variable
%Index of Refraction
n_cornea = 1.377;
n_aqueous = 1.377;
n_lens = 1.42 + 0.0026*Acc - 0.00022 * Acc^2;
n_vitreous = 1.336;
n_air = 1; %you forgot this one here
%Thickness in mm - distance to the next surface
d_cornea = 0.55*10^-3; %unused variable
d_aqueous = 2.97*10^-3 - 0.04 * Acc;
d_lens = 3.77*10^-3 + 0.04 * Acc;
d_vitreous = 16.713*10^-3;
%The system:(Arizona eye model ray matrices)
%Free space -> Ref_Cornea_Ant -> Trans_Cornea -> Ref_Cornea_Post ->
%Trans_Aq -> Ref_Lens_ant -> Trans_Lens -> Ref_Lens_Post -> Trans_vitreous
% (in general)the Transfer matrix indexes
% (in general)the Refractive matrix indexes
T = @(D) [1 D; 0 1];
R = @(n_1,n_2,r) [1 0; - (n_2 - n_1)/ (n_2 * r) (n_1/ n_2) ];
Fin=T(d_vitreous)*R(n_aqueous,n_vitreous,lens_post)* ...
T(d_lens)*R(n_aqueous,n_lens,lens_ant)* ...
T(d_aqueous)*R(n_cornea,n_aqueous,cornea_postR)* ...
T(d_aqueous)*R(n_air,n_cornea,cornea_antR);
end
More Answers (0)
See Also
Categories
Find more on System Composer in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!