Simple question about symbolic limits
5 views (last 30 days)
Show older comments
Hello,
I am checking results derived by hand in a MATLAB (2019a) live script and have encountered the following problem (MWE below): When I try to take the limit of the expression as (symbolic) variable l approaches 0, restricting , MATLAB cannot find the limit I obtain by hand. However, when I choose arbitrary values for instead of using an assumption, I get the same limit I derived by hand (which is independent of c). I suspect there is an obvious explanation for this that I am overlooking.
MWE:
%Declare symbolic variables:
syms l real;
syms t real; assumeAlso(t>1);
syms a real; assumeAlso(0<a<1);
syms p real; assumeAlso(0<p<1);
syms e real; assumeAlso(e>0);
syms c real; assumeAlso(c>0);
syms w real; assumeAlso(0<w<1);
%Functions:
phi = e/(1+c)*l^(1+c);
z = t/l*(1-exp(-l/t));
n = p*(1+c)/(p*(1+c)+z*l/phi*w);
pn = t*p*(1-n)*exp(-l/t)/n*(1-exp(-1*(t*p*(1-n)*exp(-l/t)/(a*n))^(-1)));
%Limits:
limit(pn,l,0,'right')
MATLAB cannot reduce this limit. However, when I instead impose, e.g., , via
syms l real;
syms t real; assumeAlso(t>1);
syms a real; assumeAlso(0<a<1);
syms p real; assumeAlso(0<p<1);
syms e real; assumeAlso(e>0);
syms c real; assumeAlso(c>0);
syms w real; assumeAlso(0<w<1);
%Functions:
phi = e/(1+0.1)*l^(1+0.1);
z = t/l*(1-exp(-l/t));
n = p*(1+0.1)/(p*(1+0.1)+z*l/phi*w);
pn = t*p*(1-n)*exp(-l/t)/n*(1-exp(-1*(t*p*(1-n)*exp(-l/t)/(a*n))^(-1)));
%Limits:
limit(pn,l,0,'right')
I get the result I derived by hand. The same holds for seemingly all other positive values of c. Any idea what I'm overlooking?
Thanks in advance.
0 Comments
Answers (1)
Ayush Gupta
on 12 Jun 2020
The limit specified is also dependent on c if c does not have small values. For small values of c, a simplified expression is yielded. Refer to the following link to know more about limit:
1 Comment
See Also
Categories
Find more on Assumptions in Help Center and File Exchange
Products
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!