How can I solve & this 2nd order differential equation?
1 view (last 30 days)
Show older comments
% x = x''
% y = x'
% z = x
% Conditions
f = 50:1:200; % Frequency span (Hz)
for f = 50:1:200
Equation = 50x - 100y - 25z == -1(f * 2 * pi);
plot(f, Equation)
hold on
end
0 Comments
Answers (1)
Ameer Hamza
on 12 Jun 2020
Edited: Ameer Hamza
on 12 Jun 2020
This shows how to solve this ODE for all values of 'f', and plot the solution as a surf plot
f = 50:1:200;
t = linspace(0, 10, 1000); % solve the equation for t in [0, 10]
ic = [0; 0]; % initial condition
Y = zeros(numel(f), numel(t));
for i = 1:numel(f)
[~, y] = ode45(@(t, x) odeFun(t, x, f(i)), t, ic);
Y(i, :) = y(:, 1);
end
surf(t, f, Y);
shading interp
xlabel('t');
ylabel('f');
zlabel('x');
function dxdt = odeFun(t, x, f)
dxdt = zeros(2, 1);
dxdt(1) = x(2);
dxdt(2) = 1/50*(100*x(2) + 25*x(1) - 1*2*pi*f);
end
Also see this example: https://www.mathworks.com/help/matlab/ref/ode45.html#bu3uj8b. It shows how to convert the 2nd-order ODE into a system of 2 first-order ODEs.
0 Comments
See Also
Categories
Find more on Ordinary Differential Equations in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!