Output is coming out as a large expression
3 views (last 30 days)
Show older comments
When I run the code below, the outputs appear as a large expression. Here, I have a upper limit in one of the sym summation min() condition. Pl somebody help me to get the output in simple numeric form.
clc;
syms n m p q s l up_lt
mu=1.0051;
nu=0.1015;
eta=0.0922;
k=2;
assume(p>=0);
assume(q>=0);
assume(l>=0);
assume(s>=0);
assume(m>=0);
assume(n>=0);
x1= 2.*q + l -m;
y1= 2.*p - n;
up_lt= min(x1,y1); %%%%%%%%% Upper limit of the sum in sGnmp3
Gnmp1= (((-1).^(k-l))-1).*nchoosek(k,l).*((eta.*(mu-nu)).^(k-l)).*((mu.*nu./2).^l);
sGnmp1= symsum(Gnmp1,l,0,k);
Gnmp2= (1./(factorial(p).*factorial(q))).*nchoosek(p,n-p).*nchoosek(q,m-q);
sGnmp2= symsum(symsum(Gnmp2,q,0,m),p,0,n);
Gnmp3= ((2.*mu./nu).^s).*factorial(s).*nchoosek(x1,s) .*nchoosek(y1,s).*hermiteH(x1-s,0).*hermiteH(y1-s, 0);
sGnmp3= symsum(Gnmp3,s,0,up_lt);
Gnmm1= (((-1).^(k-l))+1).*nchoosek(k,l).*((eta.*(mu-nu)).^(k-l)).*((mu.*nu./2).^l);
sGnmm1= symsum(Gnmm1,l,0,k);
Gnmp= symfun((sqrt(factorial(n).*factorial(m)).*((nu./(2.*mu)).^((n+m)./2)).*sGnmp1.*sGnmp2.*sGnmp3),[n,m]);
Gnmm= symfun((sqrt(factorial(n).*factorial(m)).*((nu./(2.*mu)).^((n+m)./2)).*sGnmm1.*sGnmp2.*sGnmp3),[n,m]);
outp= vpa(Gnmp(6,5)) %%% n and m can be taken as any positive integer.
outm= vpa(Gnmm(5,5))
0 Comments
Accepted Answer
Walter Roberson
on 14 Jun 2020
It is not possible to get that output in simple numeric form. The result depends upon the unresolved variables l, p and q.
About the best you can do is produce an output under each of the two possible conditions implied by your use of min()
syms n m p q s l up_lt
Q = @(v) sym(v);
mu = Q(1.0051);
nu = Q(0.1015);
eta = Q(0.0922);
k=2;
x1 = 2.*q + l - m;
y1 = 2.*p - n;
up_lt_vals = [x1, y1];
up_lt_cond = [x1 <= y1, y1 <= x1];
n_up_lt = length(up_lt_vals);
outp = zeros(n_up_lt, 1, 'sym');
outm = zeros(n_up_lt, 1, 'sym');
for up_lt_idx = 1 : n_up_lt
assume([n, m, p, q, s, l, up_lt], 'clear')
assumeAlso(p>=0);
assumeAlso(q>=0);
assumeAlso(l>=0);
assumeAlso(s>=0);
assumeAlso(m>=0);
assumeAlso(n>=0);
assumeAlso(up_lt_cond(up_lt_idx));
up_lt = up_lt_vals(up_lt_idx); %%%%%%%%% Upper limit of the sum in sGnmp3
Gnmp1 = (((-1).^(k-l))-1).*nchoosek(k,l).*((eta.*(mu-nu)).^(k-l)).*((mu.*nu./2).^l);
sGnmp1 = symsum(Gnmp1,l,0,k);
Gnmp2 = (1./(factorial(p).*factorial(q))).*nchoosek(p,n-p).*nchoosek(q,m-q);
sGnmp2 = symsum(symsum(Gnmp2,q,0,m),p,0,n);
Gnmp3 = ((2.*mu./nu).^s).*factorial(s).*nchoosek(x1,s) .*nchoosek(y1,s).*hermiteH(x1-s,0).*hermiteH(y1-s, 0);
sGnmp3 = symsum(Gnmp3,s,0,up_lt);
Gnmm1 = (((-1).^(k-l))+1).*nchoosek(k,l).*((eta.*(mu-nu)).^(k-l)).*((mu.*nu./2).^l);
sGnmm1 = symsum(Gnmm1,l,0,k);
Gnmp = symfun((sqrt(factorial(n).*factorial(m)).*((nu./(2.*mu)).^((n+m)./2)).*sGnmp1.*sGnmp2.*sGnmp3),[n,m]);
Gnmm = symfun((sqrt(factorial(n).*factorial(m)).*((nu./(2.*mu)).^((n+m)./2)).*sGnmm1.*sGnmp2.*sGnmp3),[n,m]);
outp(up_lt_idx) = simplify(Gnmp(6,5), 'steps', 5); %%% n and m can be taken as any positive integer.
outm(up_lt_idx) = simplify(Gnmm(5,5), 'steps', 5);
end
disp(up_lt_cond(1));
disp([outp(1); outm(1)]);
disp(up_lt_cond(2));
disp([outp(2); outm(2)]);
but this will not be very different than your existing code with min(). If more information was known about p, q, or l, then perhaps there might be additional simplification.
3 Comments
Walter Roberson
on 14 Jun 2020
Gnmp3 = ((2.*mu./nu).^s).*factorial(s).*nchoosek(x1,s) .*nchoosek(y1,s).*hermiteH(x1-s,0).*hermiteH(y1-s, 0);
That line uses x1 and y1, which depend upon l, p, and q.
The Gmnp3 is not used within a symsum over l, p, or q, unlike sGnmp2
More Answers (0)
See Also
Categories
Find more on Assumptions in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!