Clear Filters
Clear Filters

Unable to perform assignment because the indices on the left side are not compatible with the size of the right side

1 view (last 30 days)
Can anyone solve the problem in my code that returns the error by ?
close all
clear all
clc
%%
mu0 = 4*pi*1e-7; % Vs/Am
M0 = 1e3; % A/m
maxnum = 31;
rho1_min = 0;
rho1_max = 0.25;
xlim = [-1, 1];
ylim = xlim;
zlim = xlim;
x = linspace(min(xlim), max(xlim), maxnum);
y = linspace(min(ylim), max(ylim), maxnum);
z = linspace(min(zlim), max(zlim), maxnum);
[Xg, Yg, Zg] = ndgrid(x, y, z);
rho = sqrt(Xg.^2 + Yg.^2 + Zg.^2);
phi = angle(Xg + 1i*Yg);
theta = angle(Zg + 1i*sqrt(Xg.^2 + Yg.^2));
%%
RHO = sqrt(x.^2 + y.^2 + z.^2);
THETA = linspace(0, pi, 31); % Trapz
PHI = linspace(0, 2*pi, 31); % Trapz
%%
for i=1:numel(RHO)
for j=1:numel(THETA)
for k=1:numel(PHI)
F_x{i,j,k} = (RHO(i)>= rho1_max) .* 2/3*M0*mu0 .* sin(theta) .* (RHO(i) .* (sin(THETA(j)) .* cos(theta) .* cos(PHI(k)-phi) - cos(THETA(j)) .* sin(theta)) ./ ...
(RHO(i).^2 + rho1_max.^2 - 2.*RHO(i) .* rho1_max .* (sin(THETA(j)) .* sin(theta) .* cos(PHI(k)-phi) + cos(THETA(j)).* cos(theta))).^3/2) .* rho1_max.^2 .* sin(theta);
B1x(i,j,k) = -trapz(PHI,trapz(THETA,F_x{i,j,k},2)) ;
end
end
end
  1 Comment
madhan ravi
madhan ravi on 9 Jul 2020
Couple of suggestions:
1) Never name a variable which is the same as MATLAB’s in - built function (xlim.., etc)
2) i and j are imaginary units use ii and jj instead.
3) preallocation is really significant
4) Use cell arrays for preallocation which avoids ambiguities

Sign in to comment.

Accepted Answer

Subhadeep Koley
Subhadeep Koley on 9 Jul 2020
Edited: Subhadeep Koley on 9 Jul 2020
Pre allocate B1x as cell array instead of numeric array to solve the problem.
close
clear
clc
%%
mu0 = 4*pi*1e-7; % Vs/Am
M0 = 1e3; % A/m
maxnum = 31;
rho1_min = 0;
rho1_max = 0.25;
xlimit = [-1, 1];
ylimit = xlimit;
zlimit = xlimit;
x = linspace(min(xlimit), max(xlimit), maxnum);
y = linspace(min(ylimit), max(ylimit), maxnum);
z = linspace(min(zlimit), max(zlimit), maxnum);
[Xg, Yg, Zg] = ndgrid(x, y, z);
rho = sqrt(Xg.^2 + Yg.^2 + Zg.^2);
phi = angle(Xg + 1i*Yg);
theta = angle(Zg + 1i*sqrt(Xg.^2 + Yg.^2));
%%
RHO = sqrt(x.^2 + y.^2 + z.^2);
THETA = linspace(0, pi, 31); % Trapz
PHI = linspace(0, 2*pi, 31); % Trapz
%%
% Pre-allocate F_x and B1x as cell array
F_x = cell(numel(RHO), numel(THETA), numel(PHI));
B1x = cell(numel(RHO), numel(THETA), numel(PHI));
for ii = 1:numel(RHO)
for jj = 1:numel(THETA)
for kk = 1:numel(PHI)
F_x{ii, jj, kk} = (RHO(ii)>= rho1_max) .* 2/3*M0*mu0 .* sin(theta) .* (RHO(ii) .* (sin(THETA(jj)) .* cos(theta) .* cos(PHI(kk)-phi) - cos(THETA(jj)) .* sin(theta)) ./ ...
(RHO(ii).^2 + rho1_max.^2 - 2.*RHO(ii) .* rho1_max .* (sin(THETA(jj)) .* sin(theta) .* cos(PHI(kk)-phi) + cos(THETA(jj)).* cos(theta))).^3/2) .* rho1_max.^2 .* sin(theta);
B1x{ii, jj, kk} = squeeze(-trapz(PHI,trapz(THETA,F_x{ii,jj,kk},2)));
end
end
end

More Answers (0)

Products


Release

R2020a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!