AlexNet pretrained network?

4 views (last 30 days)
shivan artosh
shivan artosh on 2 Oct 2020
Commented: Walter Roberson on 5 Oct 2020
hello
i have this code and i need to exchange AlexNet with (vgg16, vgg19, ResNet18 and densnet201) one by one.
could you please tell me which part of this code should be changed?
clear all; close all; clc;
imds = imageDatastore('lung augmented', ...
'IncludeSubfolders',true, ...
'LabelSource','foldernames'); % for JPG images
[imdsTrain,imdsValidation] = splitEachLabel(imds,0.7,'randomize',true);
net = alexnet(); % analyzeNetwork(lgraph)
numClasses = numel(categories(imdsTrain.Labels)); % number of classes = number of folders
imageSize = [224 224]; % you can use here the original dataset size
lgraph = layerGraph(net.Layers);
lgraph = removeLayers(lgraph, 'fc8');
lgraph = removeLayers(lgraph, 'prob');
lgraph = removeLayers(lgraph, 'output');
% create and add layers
inputLayer = imageInputLayer([imageSize 1], 'Name', net.Layers(1).Name,...
'DataAugmentation', net.Layers(1).DataAugmentation, ...
'Normalization', net.Layers(1).Normalization);
lgraph = replaceLayer(lgraph,net.Layers(1).Name,inputLayer);
newConv1_Weights = net.Layers(2).Weights;
newConv1_Weights = mean(newConv1_Weights(:,:,1:3,:), 3); % taking the mean of kernal channels
newConv1 = convolution2dLayer(net.Layers(2).FilterSize(1), net.Layers(2).NumFilters,...
'Name', net.Layers(2).Name,...
'NumChannels', inputLayer.InputSize(3),...
'Stride', net.Layers(2).Stride,...
'DilationFactor', net.Layers(2).DilationFactor,...
'Padding', net.Layers(2).PaddingSize,...
'Weights', newConv1_Weights,...BiasLearnRateFactor
'Bias', net.Layers(2).Bias,...
'BiasLearnRateFactor', net.Layers(2).BiasLearnRateFactor);
lgraph = replaceLayer(lgraph,net.Layers(2).Name,newConv1);
lgraph = addLayers(lgraph, fullyConnectedLayer(numClasses,'Name', 'fc2'));
lgraph = addLayers(lgraph, softmaxLayer('Name', 'softmax'));
lgraph = addLayers(lgraph, classificationLayer('Name','output'));
lgraph = connectLayers(lgraph, 'drop7', 'fc2');
lgraph = connectLayers(lgraph, 'fc2', 'softmax');
lgraph = connectLayers(lgraph, 'softmax', 'output');
% -------------------------------------------------------------------------
augimdsTrain = augmentedImageDatastore(imageSize,imdsTrain);
augimdsValidation = augmentedImageDatastore(imageSize,imdsValidation);
options = trainingOptions('sgdm', ...
'MiniBatchSize',64, ...
'MaxEpochs',30, ... % i changed this from 20 to 10 and 5
'InitialLearnRate',0.0001, ...
'Shuffle','every-epoch', ...
'ValidationData',augimdsValidation, ...
'ValidationFrequency',3, ...
'Verbose',false, ...
'Plots','training-progress');
net = trainNetwork(augimdsTrain,lgraph,options)
[YPred, probs] = classify(net,augimdsValidation);
accuracy = mean(YPred ==imdsValidation.Labels)
figure
cc = confusionchart (imdsValidation.Labels, YPred);
  2 Comments
Walter Roberson
Walter Roberson on 2 Oct 2020
I am not clear as to what you mean by "exchanging" those?
shivan artosh
shivan artosh on 2 Oct 2020
i mean substitute alexnet with another network e.g. (vgg16, vgg19, densnet...) as shown in this line:
net = alexnet(); % analyzeNetwork(lgraph)

Sign in to comment.

Answers (1)

Walter Roberson
Walter Roberson on 2 Oct 2020
nets = {alexnet(), vgg16(), vgg19(), resnet18()}; %I do not see desnet201 available
numnet = length(nets);
for netidx = 1 : numnet
net = nets{netidx};
now do your stuff starting from the assignment to numClasses
end
I tend to suspect that the exact names of the existing layers to remove will differ from model to model.
  8 Comments
shivan artosh
shivan artosh on 4 Oct 2020
i use only resnet18, but i got this error:
Error using nnet.cnn.LayerGraph>iValidateLayerName (line 663)
Layer 'fc18' does not exist.
Error in nnet.cnn.LayerGraph/removeLayers (line 234)
iValidateLayerName( ...
Error in SHIVANaugmented_test (line 20)
lgraph = removeLayers(lgraph, 'fc18');
Walter Roberson
Walter Roberson on 5 Oct 2020
It looks to me as if resnet18 has a layer 'fc1000'

Sign in to comment.

Categories

Find more on Image Data Workflows in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!