MATLAB Answers

Error in code.

7 views (last 30 days)
keerthi appala
keerthi appala on 5 Nov 2020
Answered: Sean de Wolski on 5 Nov 2020
Hi,
I am trying to run the following code it is showing me the following error.Can someone explain me what's wrong.
Thanks
%Answer 2
%with 5 variables
mdl1 = stepwiselm(beer_spectra,extract_data,'Upper','linear','Criterion','bic','NSteps',5);
1. Adding *464, BIC = 49.834
2. Adding *368, BIC = -17.5899
3. Adding *559, BIC = -24.1202
4. Adding *644, BIC = -28.8595
5. Adding *380, BIC = -35.021
mdl1 =
Linear regression model:
y ~ 1 + x368 + x380 + x464 + x559 + x644
Estimated Coefficients:
Estimate SE tStat pValue
________ ______ _______ __________
(Intercept) 148.96 10.548 14.122 8.7499e-16
x368 58.286 14.747 3.9524 0.00037113
x380 40.477 13.137 3.0812 0.0040682
x464 -123.12 4.7784 -25.766 6.8252e-24
x559 11.471 2.4232 4.7336 3.7951e-05
x644 8.6249 2.0201 4.2695 0.00014862
Number of observations: 40, Error degrees of freedom: 34
Root Mean Squared Error: 0.128
R-squared: 0.998, Adjusted R-Squared: 0.997
F-statistic vs. constant model: 2.8e+03, p-value = 1.96e-43
%with 10 variables
mdl2 = stepwiselm(beer_spectra,extract_data,'Upper','linear','Criterion','bic','NSteps',10)
1. Adding x464, BIC = 49.834
2. Adding x368, BIC = -17.5899
3. Adding x559, BIC = -24.1202
4. Adding x644, BIC = -28.8595
5. Adding x380, BIC = -35.021
6. Adding x848, BIC = -40.5982
7. Adding x648, BIC = -46.2822
8. Adding x731, BIC = -50.83
9. Adding x549, BIC = -57.7006
10. Adding x868, BIC = -65.974
mdl2 =
Linear regression model:
y ~ 1 + x368 + x380 + x464 + x549 + x559 + x644 + x648 + x731 + x848 + x868
Estimated Coefficients:
Estimate SE tStat pValue
________ _______ _______ __________
(Intercept) 152.26 8.7001 17.501 5.9138e-17
x368 41.635 9.6744 4.3036 0.00017445
x380 60.569 8.4066 7.2049 6.2305e-08
x464 -131.09 3.0401 -43.121 7.4363e-28
x549 4.5534 1.4022 3.2473 0.0029397
x559 13.369 1.4883 8.9826 7.1006e-10
x644 11.588 1.2481 9.2848 3.4568e-10
x648 -6.4651 1.4485 -4.4632 0.00011239
x731 -2.1068 0.45986 -4.5814 8.1059e-05
x848 -3.7921 0.80907 -4.6871 6.0491e-05
x868 2.7459 0.86363 3.1795 0.0034969
Number of observations: 40, Error degrees of freedom: 29
Root Mean Squared Error: 0.075 %RMSE is lower than previous model
R-squared: 0.999, Adjusted R-Squared: 0.999 %R-squared value is closer to 1 than previous model
F-statistic vs. constant model: 4.12e+03, p-value = 6.69e-43
%I choose this model for further analysis.
%Plot
figure;
scatter(extract_data,mdl2.Fitted);
xlabel("extract value (measured)");
ylabel("extract value (predicted)");
str = {'Rsquared = 0.999'};
text(-8,6,str)
idx = training(c,1);
regf=@(beer_spectra,exctract_data,beer_test_spectra)([ones(size(beer_test_spectra,1),1) beer_test_spectra]*regress(extract_data,[ones(size(beer_spectra,1),1) beer_spectra]));
%Using lasso()
[B, FitInfo] = lasso(beer_spectra,extract_data,'CV',10);
FitInfo =
struct with fields:
Intercept: [1×51 double] %#ok<BADCH>
Lambda: [1×51 double] %#ok<BADCH>
Alpha: 1
DF: [33 31 28 28 27 25 23 22 22 20 17 18 16 15 15 15 12 11 7 3 3 3 3 3 3 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0]
MSE: [1×51 double] %#ok<BADCH>
PredictorNames: {}
SE: [1×51 double] %#ok<*BADCH>
LambdaMinMSE: 0.0226
Lambda1SE: 0.0914
IndexMinMSE: 1
Index1SE: 16
lassoPlot(B,FitInfo,'PlotType','CV');
legend('show')
idxLambda1SE = FitInfo.Index1SE;
b = B(2:end,idxLambda1SE);
b0 = FitInfo.Intercept(idxLambda1SE);
plot(b);
xlabel('variable')
ylabel('regression coefficient')
title('Plot of regression coefficients')
%plot of measured vs predicted extract value
yhat = beer_test_spectra*b + b0;
scatter(extract_test_data,yhat)
hold on
plot(extract_test_data,extract_test_data)
xlabel('measured extract value') ;
ylabel('predicted extract value');
title('Plot of measured and predicted extract value')
%RMSECV and RMSEP
idx = training(c,1);
regf=@(beer_spectra,extract_data,beer_test_spectra)([ones(size(beer_test_spectra,1),1) beer_test_spectra]*regress(extract_data,[ones(size(beer_spectra,1),1) beer_spectra]));
RMSECV1 = sqrt(crossval('mse',beer_spectra,extract_data,'predfun',regf,'kfold',10))
RMSECV1 =
3.7016
RMSEP1=sqrt(sum((extract_test_data-yhat).^2)/size(beer_test_spectra,1))
RMSEP1 =
0.1398
%Cross-validation
C_PCR = cvpartition(926,'Kfold',10);
for i = 1:10
trIdx = C_PCR.training(i);
teIdx = C_PCR.test(i);
yhat_cv = polyval(polyfit(trIdx,extract_data,2),beer_test_spectra);
sse = sse + sum((yhat_cv - extract_test_data).^2);
end
%plot
figure;
plot(Y,Yhat_cv,'o',extract_test_data,yfit,'r-');
hold on
axis square
xlabel('Observed y Values')
ylabel('Predicted y Values')
title('Plot of measured vs predicted extract value')
  2 Comments
keerthi appala
keerthi appala on 5 Nov 2020
Error: File: Answer2.m Line: 4 Column: 4
Invalid expression. Check for missing multiplication operator, missing or unbalanced delimiters, or other syntax
error. To construct matrices, use brackets instead of parentheses.
This is the error i am getting.

Sign in to comment.

Answers (1)

Sean de Wolski
Sean de Wolski on 5 Nov 2020
It looks like you just copied someone's script that has the outputs as well as the code. You can't run the outputs.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!