- Every FIS needs to have its Inputs, Outputs and MFs defined separately.
- FIS3 would not have two MFs at its inputs. All it gets from FIS1 or FIS2 is a number. It decides what that number means based on the MF defined on its (FIS3's) inputs. So, yes, in your case you would have to redefine FIS1 and FIS2 output MFs as the MFs for the two inputs to FIS3.
- The error that you see - “Error using FuzzyInferenceSystem/addRule (line 1148). Invalid input membership function name in rule description.” is because the inputs of FIS3 are instantiated, by default, to have 3 MFs called 'mf1', 'mf2', 'mf3' for both the inputs. You can see this by typing the following in the command window after executing the script until the line that errors out:
Error with Fuzzy Tree Model
12 views (last 30 days)
Show older comments
Dzung Nguyen
on 29 Dec 2020
Answered: Layla Mohammad
on 28 Jul 2023
Hello everyone,
I create a fuzzy tree (aggregated structure) in Matlab and I have an error which I hope to be supported.
My fuzzy tree has 3 fuzzy models (fis1, fis2, fis3). fis1 is the tipper1 and it has 2 inputs: service and food. Fis2 is tipper2 and it has 2 input: service and food. Outputs of fis1 and fis2 are Inputs of fis3. However, when I run it, the error is “Error using FuzzyInferenceSystem/addRule (line 1148). Invalid input membership function name in rule description.”
I think maybe error comes because I don’t create membership function for inputs of fis3. But I have already created membership function for outputs of fis1 and fis2, so if I create membership function for fis3, the inputs of fis3 will have 2 times of membership function. Could you support me with this issue? Thank you.
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/473322/image.png)
% Fuzzy model 1
fis1 = mamfis('Name',"tipper1");
fis1 = addInput(fis1,[0 10],'Name',"service");
fis1 = addMF(fis1,"service","gaussmf",[1.5 0],'Name',"poor");
fis1 = addMF(fis1,"service","gaussmf",[1.5 5],'Name',"good");
fis1 = addMF(fis1,"service","gaussmf",[1.5 10],'Name',"excellent");
fis1 = addInput(fis1,[0 10],'Name',"food");
fis1 = addMF(fis1,"food","trapmf",[-2 0 1 3],'Name',"rancid");
fis1 = addMF(fis1,"food","trapmf",[7 9 10 12],'Name',"delicious");
fis1 = addOutput(fis1,[0 30],'Name',"tip1");
fis1 = addMF(fis1,"tip1","trimf",[0 5 10],'Name',"cheap");
fis1 = addMF(fis1,"tip1","trimf",[10 15 20],'Name',"average");
fis1 = addMF(fis1,"tip1","trimf",[20 25 30],'Name',"generous");
rulefis1a = "service==poor | food==rancid => tip1=cheap";
rulefis1b = "service==good => tip1=average";
rulefis1c = "service==excellent | food==delicious => tip1=generous";
rulefis1d = [rulefis1a rulefis1b rulefis1c];
fis1b = addRule(fis1,rulefis1d);
%Fuzzy model 2
fis2 = mamfis('Name',"tipper2");
fis2 = addInput(fis2,[0 10],'Name',"service");
fis2 = addMF(fis2,"service","gaussmf",[1.5 0],'Name',"poor");
fis2 = addMF(fis2,"service","gaussmf",[1.5 5],'Name',"good");
fis2 = addMF(fis2,"service","gaussmf",[1.5 10],'Name',"excellent");
fis2 = addInput(fis2,[0 10],'Name',"food");
fis2 = addMF(fis2,"food","trapmf",[-2 0 1 3],'Name',"rancid");
fis2 = addMF(fis2,"food","trapmf",[7 9 10 12],'Name',"delicious");
fis2 = addOutput(fis2,[0 30],'Name',"tip2");
fis2 = addMF(fis2,"tip2","trimf",[0 5 10],'Name',"cheap");
fis2 = addMF(fis2,"tip2","trimf",[10 15 20],'Name',"average");
fis2 = addMF(fis2,"tip2","trimf",[20 25 30],'Name',"generous");
rulefis2a = "service==poor | food==rancid => tip2=cheap";
rulefis2b = "service==good => tip2=average";
rulefis2c = "service==excellent | food==delicious => tip2=generous";
rulefis2d = [rulefis2a rulefis2b rulefis2c];
fis2b = addRule(fis2,rulefis2d);
%Fuzzy model 3
fis3 = mamfis('Name','fis3','NumInputs',2,'NumOutputs',1);
fis3.Outputs(1).Name = "final_tip";
con1 = ["tipper1/tip1" "fis3/input1"];
con2 = ["tipper2/tip2" "fis3/input2"];
fis3 = addMF(fis3,"final_tip","trapmf",[-2 0 1 3],'Name',"rancid");
fis3 = addMF(fis3,"final_tip","trapmf",[7 9 10 12],'Name',"delicious");
rulefis3a = "input1==cheap | input2==average => final_tip=rancid";
rulefis3b = "input1==average => final_tip=rancid";
rulefis3c = "input1==generous | input2==generous => final_tip=delicious";
rulefis3d = [rulefis3a rulefis3b rulefis3c];
fis3b = addRule(fis3,rulefis3d);
aggTree = fistree([fis1b fis2b fis3b],[con1;con2]);
output = evalfis(aggTree,[0.2 0.25 0.3 0.2]);
0 Comments
Accepted Answer
Asvin Kumar
on 14 Feb 2021
There were a couple of issues that needed fixing.
fis3.Inputs(1).MembershipFunctions
fis3.Inputs(2).MembershipFunctions
They have these default member functions because fis3 was created in your script with the following command:
fis3 = mamfis('Name','fis3','NumInputs',2,'NumOutputs',1);
Here's the code with a couple of changes. You should be able to adapt this for your use:
% Fuzzy model 1
fis1 = mamfis('Name',"tipper1");
fis1 = addInput(fis1,[0 10],'Name',"service");
fis1 = addMF(fis1,"service","gaussmf",[1.5 0],'Name',"poor");
fis1 = addMF(fis1,"service","gaussmf",[1.5 5],'Name',"good");
fis1 = addMF(fis1,"service","gaussmf",[1.5 10],'Name',"excellent");
fis1 = addInput(fis1,[0 10],'Name',"food");
fis1 = addMF(fis1,"food","trapmf",[-2 0 1 3],'Name',"rancid");
fis1 = addMF(fis1,"food","trapmf",[7 9 10 12],'Name',"delicious");
fis1 = addOutput(fis1,[0 30],'Name',"tip1");
fis1 = addMF(fis1,"tip1","trimf",[0 5 10],'Name',"cheap");
fis1 = addMF(fis1,"tip1","trimf",[10 15 20],'Name',"average");
fis1 = addMF(fis1,"tip1","trimf",[20 25 30],'Name',"generous");
rulefis1a = "service==poor | food==rancid => tip1=cheap";
rulefis1b = "service==good => tip1=average";
rulefis1c = "service==excellent | food==delicious => tip1=generous";
rulefis1d = [rulefis1a rulefis1b rulefis1c];
fis1b = addRule(fis1,rulefis1d);
%Fuzzy model 2
fis2 = mamfis('Name',"tipper2");
fis2 = addInput(fis2,[0 10],'Name',"service");
fis2 = addMF(fis2,"service","gaussmf",[1.5 0],'Name',"poor");
fis2 = addMF(fis2,"service","gaussmf",[1.5 5],'Name',"good");
fis2 = addMF(fis2,"service","gaussmf",[1.5 10],'Name',"excellent");
fis2 = addInput(fis2,[0 10],'Name',"food");
fis2 = addMF(fis2,"food","trapmf",[-2 0 1 3],'Name',"rancid");
fis2 = addMF(fis2,"food","trapmf",[7 9 10 12],'Name',"delicious");
fis2 = addOutput(fis2,[0 30],'Name',"tip2");
fis2 = addMF(fis2,"tip2","trimf",[0 5 10],'Name',"cheap");
fis2 = addMF(fis2,"tip2","trimf",[10 15 20],'Name',"average");
fis2 = addMF(fis2,"tip2","trimf",[20 25 30],'Name',"generous");
rulefis2a = "service==poor | food==rancid => tip2=cheap";
rulefis2b = "service==good => tip2=average";
rulefis2c = "service==excellent | food==delicious => tip2=generous";
rulefis2d = [rulefis2a rulefis2b rulefis2c];
fis2b = addRule(fis2,rulefis2d);
%Fuzzy model 3
fis3 = mamfis('Name','fis3');
fis3 = addInput(fis3,[0 30],'Name',"tip1");
fis3 = addMF(fis3,"tip1","trimf",[0 5 10],'Name',"cheap");
fis3 = addMF(fis3,"tip1","trimf",[10 15 20],'Name',"average");
fis3 = addMF(fis3,"tip1","trimf",[20 25 30],'Name',"generous");
fis3 = addInput(fis3,[0 30],'Name',"tip2");
fis3 = addMF(fis3,"tip2","trimf",[0 5 10],'Name',"cheap");
fis3 = addMF(fis3,"tip2","trimf",[10 15 20],'Name',"average");
fis3 = addMF(fis3,"tip2","trimf",[20 25 30],'Name',"generous");
fis3.Outputs(1).Name = "final_tip";
fis3 = addMF(fis3,"final_tip","trapmf",[-2 0 1 3],'Name',"low");
fis3 = addMF(fis3,"final_tip","trapmf",[7 9 10 12],'Name',"high");
rulefis3a = "tip1==cheap | tip2==average => final_tip=low";
rulefis3b = "tip1==average => final_tip=low";
rulefis3c = "tip1==generous | tip2==generous => final_tip=high";
rulefis3d = [rulefis3a rulefis3b rulefis3c];
fis3b = addRule(fis3,rulefis3d);
con1 = ["tipper1/tip1" "fis3/tip1"];
con2 = ["tipper2/tip2" "fis3/tip2"];
aggTree = fistree([fis1b fis2b fis3],[con1;con2]);
aggTree.FIS(3) = addRule(aggTree.FIS(3), rulefis3d)
output = evalfis(aggTree,[0.2 0.25 0.3 0.2])
More Answers (1)
Layla Mohammad
on 28 Jul 2023
I have exactly the same concept but different application Area
Please note that I have already designed the first 2 FISs using fuzzylogic designer
The only step needed is the aggregation part
How can i do that?
0 Comments
See Also
Categories
Find more on Fuzzy Inference System Modeling in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!