optimization using solver based

2 views (last 30 days)
eden meirovich
eden meirovich on 13 Jan 2021
Commented: Alan Weiss on 19 Jan 2021
hello!
i'm trying to use optimization tool box (problem based), and optimize 2 vector NX1 data potints.
omega = optimvar('omega',N,'LowerBound',omega_min,'UpperBound',omega_max);
T = optimvar('T',N,'LowerBound',T_min,'UpperBound',T_max);
i have my constrains here on the lower bound and upper bound, and i have constrain on thegradient too:
%% Constrains
for i=1:N-1
cons1(i) = (T(i+1)-T(i))/dt >= T_dot_min;
cons2(i) = (T(i+1)-T(i))/dt <= T_dot_max;
cons3(i) = (omega(i+1)-omega(i))/dt >= omega_dot_min;
cons4(i) = (omega(i+1)-omega(i))/dt <= omega_dot_max;
end
prob.Constraints.cons1 = cons1;
prob.Constraints.cons2 = cons2;
prob.Constraints.cons3 = cons3;
prob.Constraints.cons4 = cons4;
and my cost function here.
one = ones(N,1);
prob.Objective = sum(omega(:).*omega(:))+sum(one)+sum(T(:).*T(:));
%show and solve
%show(prob)
x0.omega(1:N)=0;
x0.T(1:N) =0;
sol = solve(prob,x0);
disp(sol);
when i run the code i get that: The problem is non-convex.
any idea what can i do to solve it?
full code:
%% General
clc;
clear;
close;
fontsize = {'Fontsize',14};
linewidth ={'Linewidth', 1.5};
legendfont = {'FontSize' , 12};
axissize = {'FontSize' , 12};
T_max = 60;
T_min = -60;
omega_max = 200;
omega_min = -200;
T_dot_max = 5;
T_dot_min = -5;
omega_dot_max = 10;
omega_dot_min = -10;
Time = 100;
dt=1;
N=100;
%% Optimization problem
prob = optimproblem('ObjectiveSense','max');
%optimization varibles - change here
omega = optimvar('omega',N,'LowerBound',omega_min,'UpperBound',omega_max);
T = optimvar('T',N,'LowerBound',T_min,'UpperBound',T_max);
%t = optimvar('t',1,'LowerBound',0,'UpperBound',Time);
t = 0:dt:Time;
%setting initial point - change here
x0.T =0 ;
x0.omega = 0;
%% Constrains
for i=1:N-1
cons1(i) = (T(i+1)-T(i))/dt >= T_dot_min;
cons2(i) = (T(i+1)-T(i))/dt <= T_dot_max;
cons3(i) = (omega(i+1)-omega(i))/dt >= omega_dot_min;
cons4(i) = (omega(i+1)-omega(i))/dt <= omega_dot_max;
end
prob.Constraints.cons1 = cons1;
prob.Constraints.cons2 = cons2;
prob.Constraints.cons3 = cons3;
prob.Constraints.cons4 = cons4;
%initial condition
cons7 = T(1)==-60;
prob.Constraints.cons7=cons7;
cons8 = omega(1)==0;
prob.Constraints.cons8=cons8;
%cost func
%w =10^-12 ;%Weight factor
one = ones(N,1);
prob.Objective = sum(omega(:).*omega(:))+sum(one)+sum(T(:).*T(:));
%show and solve
%show(prob)
x0.omega(1:N)=0;
x0.T(1:N) =0;
sol = solve(prob,x0);
disp(sol);

Answers (1)

Alan Weiss
Alan Weiss on 18 Jan 2021
Try adding the following lines after your script has run:
options = optimoptions('fmincon','MaxIterations',1e4);
[sol,fval,exitflag,output] = solve(prob,x0,'Solver','fmincon','Options',options);
Alan Weiss
MATLAB mathematical toolbox documentation
  2 Comments
eden meirovich
eden meirovich on 19 Jan 2021
first off all thank u.
this do helping me (i increasd it even more) to get a solution, but it's looks like it's not the the corect one. i even plot the cost function over time, and it's not getting bigger over time.
any other tips?
Eden,
Alan Weiss
Alan Weiss on 19 Jan 2021
You can try different starting points. See Change the Initial Point and Local vs. Global Optima.
Alan Weiss
MATLAB mathematical toolbox documentation

Sign in to comment.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!