Basins of attraction and Newtons Method.

9 views (last 30 days)
Mohamed Abohamer
Mohamed Abohamer on 20 Jan 2021
Commented: ahmed matouk on 9 Nov 2021
I am working on basins of attraction for system of two equations and I need to know what is the problem of the code to get error?
the equations:
-7.716*10^-8 + 1.*10^-6*X(1)^2 +X(1)^2*(-0.01 + 0.05*X(2)^2)^2
-4.37*10^-7 + 2.14*10^-7*X(2)^2 + X(2)^2*(-0.007 + 0.21*X(1)^2 - 0.05*X(2)^2)^2
and use the code with newton method but it gives error saying'Error in BasinofAttractiontry1_3_fixedpoint (line 20)
X = NewtonRaphson(X0) ;
I don't know what is the problem exactly.
this is the code of bassin of attraction
clc ; clear all
warning('off') % To off the warning which shows "Matrix is close to singular
% badly scaled" when algorithm passes through a point where the Jacobian
% matrix is singular
% The roots of the given governing equations
r1 = [-0.266794 ;-0.433493] ;
r2 = [0.0330718 ;0.0899008] ;
r3 = [0.260471 ;0.416437] ;
% Initial conditions
x = linspace(-2,2,200) ;
y = linspace(-2,2,200) ;
% Initialize the required matrices
Xr1 = [] ; Xr2 = [] ; Xr3 = [] ; Xr4 = [] ;
tic
for i = 1:length(x)
for j = 1:length(y)
X0 = [x(i);y(j)] ;
% Solve the system of Equations using Newton's Method
X = NewtonRaphson(X0) ;
% Locating the initial conditions according to error
if norm(X-r1)<1e-8
Xr1 = [X0 Xr1] ;
elseif norm(X-r2)<1e-8
Xr2 = [X0 Xr2] ;
elseif norm(X-r3)<1e-8
Xr3 = [X0 Xr3] ;
else % if not close to any of the roots
Xr4 = [X0 Xr4] ;
end
end
end
toc
warning('on') % Remove the warning off constraint
% Initialize figure
figure
set(gcf,'color','w')
hold on
plot(Xr1(1,:),Xr1(2,:),'.','color','r') ;
plot(Xr2(1,:),Xr2(2,:),'.','color','b') ;
plot(Xr3(1,:),Xr3(2,:),'.','color','g') ;
plot(Xr4(1,:),Xr4(2,:),'.','color','k') ;
the newton raphson code
function X = NewtonRaphson(X)
NoIter = 10 ;
% Run a loop for given number of iterations
for j=1:NoIter
% Governing equations
f = [-7.716*1e-8 + 1e-6*X(1)^2 + X(1)^2*(-0.01 + 0.05*X(2)^2)^2; -4.37*1e-7 + 2.14*1e-7*X(2)^2 + X(2)^2*(-0.007 + 0.21*X(1)^2 - 0.05*X(2)^2)^2];
% Jacobian Matrix
Jf=[2.*1e^-6*X(1) + 2*X(1)*(-0.01 + 0.05*X(2)^2)^2 0.197*X(1)^2*X(2)*(-0.01+ 0.05*X(2)^2); 0.846*X(1)*X(2)^2*(-0.007 + 0.21*X(1)^2 - 0.0506*X(2)^2) 4.287*1e^-7*X(2) - 0.202*X(2)^3*(-0.007 + 0.212*X(1)^2 - 0.0506*X(2)^2) + 2*X(2)*(-0.007 + 0.212*X(1)^2 - 0.0506*X(2)^2)^2];
% Updating the root
X=X-Jf\f;
end

Answers (1)

Mischa Kim
Mischa Kim on 20 Jan 2021
One problem was in the governing equations for f. I cleaned up a bit and this works now:
% Governing equations
f = [-7.716*1e-8 + 1e-6*X(1)^2 + X(1)^2*(-0.01 + 0.05*X(2)^2)^2;...
-4.37*1e-7 + 2.14*1e-7*X(2)^2 + X(2)^2*(-0.007 + 0.21*X(1)^2 - 0.05*X(2)^2)^2];
However, there is another problem in the plots which are probably easy to fix.
  1 Comment
Mohamed Abohamer
Mohamed Abohamer on 20 Jan 2021
@Mischa Kim thanks for this editing, i do it but still have problem in plot as you said.
Do you have any advices to fix this problem?

Sign in to comment.

Categories

Find more on Systems of Nonlinear Equations in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!