pid for dynamic malaria
1 view (last 30 days)
Show older comments
Can the pid controller be set to malaria dynamics?
7 Comments
Walter Roberson
on 24 Jan 2021
You appear to have functions named u1 and u2 and u3 that each take t as a parameter, but you have not posted the code for those functions.
Answers (1)
Sam Chak
on 20 Aug 2022
Hi @af af
Not sure what are PID controllers for the Malaria dynamics. However, by the mathematical manipulation, you can probably propose as shown below to keep the disease spread under control.
tspan = [0 10];
y0 = zeros(1, 7);
[T, Y] = ode45(@malariaSEIRS, tspan, y0);
plot(T, Y), grid, xlabel('Days')
legend('S_h', 'E_h', 'I_h', 'R_h', 'S_v', 'E_v', 'I_v', 'location', 'East')
Y(end, :)
function dydt = malariaSEIRS(t, y)
dydt = zeros(7, 1);
% parameters
phi = 0.502;
epsilon = 0.2;
beta = 0.8333;
landa = 0.09;
muh = 0.00004;
muv = 0.1429;
k = 0.7902;
a1 = 1/17;
a2 = 1/18;
lambdah = 0.2;
lambdav = 1000;
tau = 0.01 - 0.7;
psi = 0.05;
b = 0.005;
p = 0.25;
Sh = 1100;
Eh = 200;
Ih = 400;
Rh = 0;
Sv = 800;
Ev = 250;
Iv = 80;
Nh = Sh + Eh + Ih + Rh;
% Nv = Sv + Ev + Iv;
betam = beta*epsilon*phi*Iv/Nh;
landav = landa*epsilon*phi*Ih/Nh;
% states
Sh = y(1);
Eh = y(2);
Ih = y(3);
Rh = y(4);
Sv = y(5);
Ev = y(6);
Iv = y(7);
% u1, u2, u3
k3 = 1; % adjust this parameter
u3 = ((k3 - muv)*Iv + a2*Ev)/p;
u2 = 0;
k1 = 1; % adjust this parameter
u1 = (- (k1 - p*u3 - muv - 1*landav)*Sv - lambdav)/landav;
% Malaria dynamics
dydt(1) = lambdah + (k*Rh) - (1 - u1)*betam*Sh - muh*Sh;
dydt(2) = (1 - u1)*betam*Sh - (a1 + muh)*Eh;
dydt(3) = a1*Eh - (b + tau*u2)*Ih - (psi + muh)*Ih;
dydt(4) = (b + tau*u2)*Ih - (k + muh)*Rh;
dydt(5) = lambdav - (1 - u1)*landav*Sv - p*u3*Sv - muv*Sv;
dydt(6) = (1 - u1)*landav*Sv - p*u3*Ev - (a2 + muv)*Ev;
dydt(7) = a2*Ev - p*u3*Iv - muv*Iv;
end
0 Comments
See Also
Categories
Find more on PID Controller Tuning in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!