How do I use my trained CNN model to predict new pictures?

13 views (last 30 days)
Hello there,
I created simple classification model using the following example:
and I got 91% accuracy, now I want to use this CNN model to try it on new images, How do I do that?
this is my code:
clear;
clc;
outputFolder = fullfile("binary_dataset");
rootFolder = fullfile(outputFolder, "Categories");
categories = {'Anomaly','No-Anomaly'}; % names of the folders
imds = imageDatastore(fullfile(rootFolder,categories),'LabelSource','foldernames');
tbl = countEachLabel(imds);
[imdsTrain,imdsValidation] = splitEachLabel(imds, 0.8, 'randomize');
inputSize = [40 24 1];
numClasses = 2;
layers = [
imageInputLayer(inputSize)
convolution2dLayer(5,20,'Padding',1)
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2,'Stride',2)
convolution2dLayer(5,20,'Padding',1)
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2,'Stride',2)
convolution2dLayer(5,20,'Padding',1)
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2,'Stride',2)
fullyConnectedLayer(numClasses)
softmaxLayer
classificationLayer];
options = trainingOptions('sgdm', ...
'MaxEpochs',200, ...
'ValidationData',imdsValidation, ...
'ValidationFrequency',30, ...
'Verbose',false, ...
'Plots','training-progress');
net = trainNetwork(imdsTrain,layers,options);
YPred = classify(net,imdsValidation);
YValidation = imdsValidation.Labels;
accuracy = mean(YPred == YValidation)

Accepted Answer

Abhishek Gupta
Abhishek Gupta on 19 Feb 2021
Hi,
As per my understanding, you want to make predictions for new input using your trained network. You can do the same using the 'predict()' function in MATLAB: -
predictions = predict(net,newImages);
For more information, check out the documentation here: -

More Answers (0)

Categories

Find more on Image Data Workflows in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!