Integrate a ODE with anonymous functions

3 views (last 30 days)
Hi guys, I'm trying to solve a ODE problem by using the ode45 solver that receives in input a matrix that is composed by anonymous functions. I suppose that the problem is in the operations related to the functions inside the matrix.
The part of code of ODE solution is:
zero=zeros(3); %3x3 Matrix of zeros
zero34=zeros(3,4); %3x4 Matrix of zeros
zero43=zeros(4,3); %4x3 Matrix of zeros
zero44=zeros(4,4); %4x4 Matrix of zeros
% Right-hand-sides of the ODE system;
% - rows 1-6 are the equations of traslational and rotational motion of a rigid
%body;
% - rows 7-12 are the navigation and gimbal equations, to calculate CG coordinates
% and Euler angles in the Earth frame (ECEF)
dstate_dt= @(t,state) [-omegatilde(state),zero, zero,zero34;
zero, -(I)\(omegatilde(state)*I), zero,zero34;
T_DCM(state), zero, zero,zero34;
zero43, zero43, zero43,T_q2qdot(state)]*...
[u(state);v(state);w(state);
p(state) ; q(state); r(state);
xEG(state) ;yEG(state);zEG(state);
q_0(state);q_x(state);q_y(state); q_z(state)] +...
[g/W*[X(t,state);Y(t,state);Z(t,state)]; %% <------ Supposed problem HERE!
(I)\[L_roll(t,state);M_pitch(t,state);N_yaw(t,state)];zeros(7,1)];
%Ode45 options
options = odeset('RelTol',1e-9,'AbsTol',1e-9*ones(1,12));
%ODE solver
[Time_vect, State_vect] = ode45(dstate_dt, [0 t_fin], state0, options);
The code part relative to "suspect "functions is:
%Thrust
T = @(t) delta_t(t)*T_max;
%Lift
L = @(t,state) 0.5*rho(state)*(V(state)^2)*S*C_L(alpha(state),delta_e(t));
%Drag
D = @(t,state) 0.5*rho(state)*(V(state)^2)*S*C_D(alpha(state));
%Lateral Force
Y_a = @(t,state) 0.5*rho(state)*(V(state)^2)*S*C_Y(alpha(state),beta(state),delta_a(t),delta_r(t));
% Forces in body axes see Eqns. (7.21)
T_BE = @(state) quat2dcm([q_0(state) q_x(state) q_y(state) q_z(state)]);
F_G = @(state) T_BE(state) * [0; 0; W];
%Extract components of F_G by using anonymous function (ugly syntax!)
X_G = @(state) subsref(F_G(state), struct('type', '()', 'subs', {{1}})); %will return 1st element of F_G(state)
Y_G = @(state) subsref(F_G(state), struct('type', '()', 'subs', {{2}})); %will return 2nd element of F_G(state)
Z_G = @(state) subsref(F_G(state), struct('type', '()', 'subs', {{3}})); %will return 3rd element of F_G(state)
X = @(t,state) T(t)-D(t,state)*cos(alpha(state))+L(t,state)*sin(alpha(state)) + X_G(state);
Y = @(t,state) Y_a(t,state) + Y_G(state) ; %The yb and zb componens of thrust are zero
Z = @(t,state) -D(t,state)*sin(alpha(state))-L(t,state)*cos(alpha(state)) + Z_G(state);
% Aerodynamic Torques in body axes see Eqns. (7.42b)
L_roll = @(t,state) 0.5*rho(state)*V(state)^2*S*b*...
C_roll(alpha(state),beta(state),delta_a(t),delta_r(t),p(state),r(state));
M_pitch = @(t,state) 0.5*rho(state)*V(state)^2*S*c*...
C_pitch(alpha(state),delta_e(t),q(state));
N_yaw = @(t,state) 0.5*rho(state)*V(state)^2*S*b*...
C_yaw(alpha(state),beta(state),delta_a(t),delta_r(t),r(state));
I get the following error:
"Error using odearguments (line 144)
Solving @(T,STATE)[-OMEGATILDE(STATE),ZERO,ZERO,ZERO34;ZERO,-(I)\(OMEGATILDE(STATE)*I),ZERO,ZERO34;T_DCM(STATE),ZERO,ZERO,ZERO34;ZERO43,ZERO43,ZERO43,T_Q2QDOT(STATE)]*[U(STATE);V(STATE);W(STATE);P(STATE);Q(STATE);R(STATE);XEG(STATE);YEG(STATE);ZEG(STATE);Q_0(STATE);Q_X(STATE);Q_Y(STATE);Q_Z(STATE)]+[G/W*[X(T,STATE);Y(T,STATE);Z(T,STATE)];(I)\[L_ROLL(T,STATE);M_PITCH(T,STATE);N_YAW(T,STATE)];ZEROS(7,1)] requires a scalar AbsTol, or a vector AbsTol of length 13
Error in ode45 (line 115)
odearguments(FcnHandlesUsed, solver_name, ode, tspan, y0, options, varargin);"
The complete code and relative matlab functions here:

Accepted Answer

Walter Roberson
Walter Roberson on 10 May 2021
The message implies that your state0 is a vector of length 13, but your 'AbsTol',1e-9*ones(1,12) is only creating a vector of length 12.
  1 Comment
Giuseppe
Giuseppe on 10 May 2021
Oh thanks! A very simple mistakes with respect to what I expected.

Sign in to comment.

More Answers (0)

Categories

Find more on Mathematics in Help Center and File Exchange

Products


Release

R2021a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!