How to classify data in a hierarchical neural network (training, validation, testing)
1 view (last 30 days)
Show older comments
I don't know how to classify (train, validate, test) data in a hierarchical neural network.
I can classify the data with a double array, but I can't classify it well with a cell array.
net = network; % ネットワーク初期化
net.numInputs = 2; % 入力層の数を指定 (ユニットではなくグループ数)
net.numLayers = 3; % 隠れ層(2)と出力層(1)の数
net.layers{1}.size = 10; % 隠れ層1のユニット数(10)
net.layers{2}.size = 5; % 隠れ層2のユニット数(5)
net.layers{3}.size = 3; % 出力層のユニット数
net.biasConnect = [1;1;1];
net.inputConnect = [1 0;0 1;0 0]; % 入力層から直接接続される隠れ層/出力層設定
net.LayerConnect = [0 0 0;1 0 0;0 1 0]; % 隠れ層同士の接続状況
net.outputConnect = [0 0 1]; % 出力への接続状況
net.trainFcn = 'trainlm'; % 学習関数
% 伝達関数指定
net.layers{1}.transferFcn = 'logsig';
net.layers{2}.transferFcn = 'logsig';
net.layers{3}.transferFcn = 'purelin';
net.plotFcns = {'plotperform','plottrainstate'};
net.initFcn = 'initlay';
net.performFcn = 'mse';
net.divideFcn = 'dividerand';
% 入出力データ設定
X = rand(105,1000);
T = rand(3,1000);
X = con2seq(mat2cell(X,[100 5]))
T = con2seq(T);
% net.initFcn = 'initlay';
% net.performFcn = 'mse';
% net.divideFcn = 'dividerand';
% 学習
% net = feedforwardnet(5);
[net,tr] = train(net,X,T);
outputs = net(X);
errors = gsubtract(T, outputs);
performance = perform(net, T, outputs)
tInd = tr.testInd;
tstOutputs = net(X(:, tInd));
tstPerform = perform(net, T(tInd), tstOutputs)
view(net)
figure, plotperform(tr)
figure, plottrainstate(tr)
figure, plotfit(net,X,T)
figure, plotregression(T,outputs)
figure, ploterrhist(errors)
0 Comments
Answers (1)
Naoya
on 30 May 2021
Please change the net.DivideMode value from "sample" to "time".
You can divide the data into three items: training, validation, and testing, for 1000 samples.
net.plotFcns = {'plotperform','plottrainstate'};
net.initFcn = 'initlay';
net.performFcn = 'mse';
net.divideMode = 'time'; % add
0 Comments
See Also
Categories
Find more on Deep Learning Toolbox in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!