Hybrid Artificial Neural Network with Genetic Algorithm
Version 2.1.0 (26.7 KB) by
Mehdi Ghasri
Optimization of neural network weights and biases using real genetic algorithm
Hybrid Artificial Neural Network with Genetic Algorithm
The idea here is to employ the Genetic algorithm to optimize ANN parameters to improve performance. ANN provides the search space and utilizes GA to find the best solution by tuning the weights and biases required to achieve lower error rates. The error between the model output and the exact training data can reach a minimum value by iterating the GA until the desired error is met.
The code is written in such a way that it only needs to change the Excel name in CreateData.m to apply it to any data set:
f=readmatrix('DATA(cylindrical)')
In addition, during the implementation of the code, the parts of the program that require customization by researchers to get the best results from the code are asked in the form of "questdlg".
Researchers can also email the following address for article cooperation in optimization algorithms, various types of neural networks, fuzzy logic, and machine learning.
Email: Eng.mehdighasri@gmail
Cite As
Mehdi Ghasri (2024). Hybrid Artificial Neural Network with Genetic Algorithm (https://www.mathworks.com/matlabcentral/fileexchange/124600-hybrid-artificial-neural-network-with-genetic-algorithm), MATLAB Central File Exchange. Retrieved .
MATLAB Release Compatibility
Created with
R2022b
Compatible with any release
Platform Compatibility
Windows macOS LinuxTags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Discover Live Editor
Create scripts with code, output, and formatted text in a single executable document.