frontier_multiobj

find a Pareto frontier for multiple objective mixed integer linear optimisation with two objectives
6 Downloads
Updated 7 Sep 2024

View License

Consider a multiobjective optimisation to minimise both f1(x) and f2(x). A point x is Pareto efficient if there are no other points x' which satisfy f1(x')<=f1(x) and f2(x')<=f2(x) without both inequalities equal. This function finds a set of Pareto efficient points for the linear multiobjective optimisation subject to specified integer constraints, linear inequalities and linear equality constraints.
NOTE: REQUIRES OPTIMISATION TOOLBOX.
A small example:
[x,v]=frontier_multiobj( [6,4,2,1; -5,-4,-3,-2], 1:4, [], [], [], [], zeros(4,1), ones(4,1));
display(x);
display(v); % expect [0 1 2 3 5 6 7 9 11 12 13;0 -2 -3 -5 -6 -7 -9 -10 -11 -12 -14]
plot(v(1,:),-v(2,:),'x')
For other examples, run frontier_multiobj() without any input arguments.

Cite As

Ben Petschel (2024). frontier_multiobj (https://www.mathworks.com/matlabcentral/fileexchange/172294-frontier_multiobj), MATLAB Central File Exchange. Retrieved .

MATLAB Release Compatibility
Created with R2024a
Compatible with any release
Platform Compatibility
Windows macOS Linux
Tags Add Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Published Release Notes
1.0.0