Raman Effect-Inspired Optimization Algorithm (REO)
Version 1.0.0 (2.47 KB) by
praveen kumar
complex objective function is tested
Explanation of the Code:
- Initialization:
- The algorithm initializes numPhotons potential solutions randomly within the defined bounds.
- It evaluates the initial fitness of all solutions and identifies the best one.
- Scattering Events:
- For each photon (solution), the algorithm performs a scattering event:
- Stokes Shift (Exploration): A random, larger perturbation to explore new areas.
- Anti-Stokes Shift (Exploitation): A smaller perturbation to refine and improve the solution locally.
- The rand < 0.5 probability ensures a 50-50 chance between exploration and exploitation.
- Fitness Evaluation and Update:
- If a newly generated solution improves the fitness, it replaces the current solution.
- The global best solution is updated accordingly if the new solution outperforms the previous best.
- History and Visualization:
- The history array records the best fitness value at each iteration for convergence analysis.
- The final plot shows how the best fitness value evolves over the iterations.
Customization:
- Objective Function: You can replace the example objFunction with your specific function.
- Algorithm Parameters: Adjust numPhotons, maxIterations, lowerBound, and upperBound based on your problem's requirements.
- Exploration and Exploitation: Modify the shiftFactor parameters to fine-tune the balance between exploration and exploitation.
MATLAB Release Compatibility
Created with
R2022b
Compatible with any release
Platform Compatibility
Windows macOS LinuxTags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Discover Live Editor
Create scripts with code, output, and formatted text in a single executable document.
REO
Version | Published | Release Notes | |
---|---|---|---|
1.0.0 |