Chaos theory and meta-heuristics
You can simply use any of these chaotic maps when you need a random number in [0 1] in your meta-heuristic. The maps are:
Chebyshev map
Circle map
Gauss/mouse map
Iterative map
Logistic map
Piecewise map
Sine map
Singer map
Sinusoidal map
Tent map
Details can be found in the following reference:
S. Saremi, S. Mirjalili, A. Lewis, Biogeography-based optimisation with chaos, Neural Computing and Applications, In press, 2014, Springer,
You can download the paper here: http://dx.doi.org/10.1007/s00521-014-1597-x
*********************************************************************************************************************************************
A course on “Optimization Problems and Algorithms: how to understand, formulation, and solve optimization problems”:
https://www.udemy.com/optimisation/?couponCode=MATHWORKSREF
A course on “Introduction to Genetic Algorithms: Theory and Applications”
https://www.udemy.com/geneticalgorithm/?couponCode=MATHWORKSREF
*********************************************************************************************************************************************
Cite As
Seyedali Mirjalili (2024). Chaos theory and meta-heuristics (https://www.mathworks.com/matlabcentral/fileexchange/47215-chaos-theory-and-meta-heuristics), MATLAB Central File Exchange. Retrieved .
MATLAB Release Compatibility
Platform Compatibility
Windows macOS LinuxCategories
Tags
Acknowledgements
Inspired: Ulmann-Victor_Attractor, A-Novel-Bio-Inspired-Python-Snake-Optimization-Algorithm
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Discover Live Editor
Create scripts with code, output, and formatted text in a single executable document.