AdaBoost

AdaBoost, Weak classifiers: GDA, Knn, Naive Bayes, Linear, SVM
1.4K Downloads
Updated 28 May 2017

View License

AdaBoost Demo, with various Weak classifiers:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AdaBoost :
AdaBoost (Adaptive Boosting) generates a sequence of hypothesis and combines them with weights.

::Choosen Weak classifiers::
1. GDA
2. Knn (NumNeighbors = 30)
3. Naive Bayes
4. Linear (Logistic Regression*)
5. SVM ('KernelFunction: rbf')

Refer to: https://www.iist.ac.in/sites/default/files/people/in12167/adaboost.pdf

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Contents:
1. Initialization (Dataset:: NoisyData.csv)
2. Gaussian Discriminant Analysis Classification
3. Knn Classification
4. Naive Bayes Classification
5. Logistic Regression
6. SVM (rbf) Classification
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
| Adaboost (GDA, Knn, NB, Logistic, SVM) |
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
7. Conclusions

Related Examples:
1. SVM
https://in.mathworks.com/matlabcentral/fileexchange/63158-support-vector-machine

2. SVM using various kernels
https://in.mathworks.com/matlabcentral/fileexchange/63033-svm-using-various-kernels

3. SVM for nonlinear classification
https://in.mathworks.com/matlabcentral/fileexchange/63024-svm-for-nonlinear-classification

4. SMO
https://in.mathworks.com/matlabcentral/fileexchange/63100-smo--sequential-minimal-optimization-

5. AdaBoost+ PCA
https://in.mathworks.com/matlabcentral/fileexchange/63161-adaboost--pca--capstone-project-

Cite As

Bhartendu (2024). AdaBoost (https://www.mathworks.com/matlabcentral/fileexchange/63162-adaboost), MATLAB Central File Exchange. Retrieved .

MATLAB Release Compatibility
Created with R2015a
Compatible with any release
Platform Compatibility
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Published Release Notes
1.0.0.0