Skip to content
MathWorks - Mobile View
  • Sign In to Your MathWorks AccountSign In to Your MathWorks Account
  • Access your MathWorks Account
    • My Account
    • My Community Profile
    • Link License
    • Sign Out
  • Products
  • Solutions
  • Academia
  • Support
  • Community
  • Events
  • Get MATLAB
MathWorks
  • Products
  • Solutions
  • Academia
  • Support
  • Community
  • Events
  • Get MATLAB
  • Sign In to Your MathWorks AccountSign In to Your MathWorks Account
  • Access your MathWorks Account
    • My Account
    • My Community Profile
    • Link License
    • Sign Out

Videos and Webinars

  • MathWorks
  • Videos
  • Videos Home
  • Search
  • Videos Home
  • Search
  • Contact sales
  • Trial software
13:51 Video length is 13:51.
  • Description
  • Related Resources

Developing Onboard SOH Estimation Using DVA and ICA for LFP Batteries

David Jauernig, Gotion, Inc.

In this session, see how we developed a high accuracy onboard battery state of health estimation method based on the differential voltage (DVA) and incremental capacity analysis (ICA) for electric vehicles. Using cycling data from lithium-ion battery cells at various temperatures, we extracted the charging cycles and calculated the DVA and ICA curves, which are then filtered with an IIR-filter to reduce noise. Multiple features (i.e., peaks or valleys of the curves) are extracted and analyzed, and the most promising features are selected for further steps. The selected features are brought into correlation with the capacity fade, and a linear regression model is calculated between the selected features at various temperatures. With these linear models, a 2D Look-Up Table (LUT) is created by interpolating the values between the linear models. For the onboard implementation, we developed a Simulink® model which realized the calculation and filtering of the ICA- and DVA-curve. Also, we implemented a feature detection algorithm that detects and verifies the selected features, which are forwarded to the 2D LUT to calculate the current SOH. We tested and converted this model to AUTOSAR-compliant code and will validate it on Gotion’s in-house developed BMS.

Related Products

  • Embedded Coder
  • AUTOSAR Blockset
  • MATLAB
  • Simulink
  • Simulink Test

Learn More

See all proceedings from MATLAB EXPO 2022
View slides

Bridging Wireless Communications Design and Testing with MATLAB

Read white paper

Feedback

Featured Product

Embedded Coder

  • Request Trial
  • Get Pricing

Up Next:

58:47
Model-Based Design for DO-178C Software Development with...

Related Videos:

16:26
Using a TI F28069 LaunchPad with Simulink
48:36
ARM Cortex-A, -R, -M Optimized Code Generation using MATLAB...
51:49
Smarter System Verification using Simulink and Simics
4:25
Introduction to Embedded Coder for BeagleBone Black

View more related videos

MathWorks - Domain Selector

Select a Web Site

Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .

  • Switzerland (English)
  • Switzerland (Deutsch)
  • Switzerland (Français)
  • 中国 (简体中文)
  • 中国 (English)

You can also select a web site from the following list:

How to Get Best Site Performance

Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.

Americas

  • América Latina (Español)
  • Canada (English)
  • United States (English)

Europe

  • Belgium (English)
  • Denmark (English)
  • Deutschland (Deutsch)
  • España (Español)
  • Finland (English)
  • France (Français)
  • Ireland (English)
  • Italia (Italiano)
  • Luxembourg (English)
  • Netherlands (English)
  • Norway (English)
  • Österreich (Deutsch)
  • Portugal (English)
  • Sweden (English)
  • Switzerland
    • Deutsch
    • English
    • Français
  • United Kingdom (English)

Asia Pacific

  • Australia (English)
  • India (English)
  • New Zealand (English)
  • 中国
    • 简体中文Chinese
    • English
  • 日本Japanese (日本語)
  • 한국Korean (한국어)

Contact your local office

  • Contact sales
  • Trial software

MathWorks

Accelerating the pace of engineering and science

MathWorks is the leading developer of mathematical computing software for engineers and scientists.

Discover…

Explore Products

  • MATLAB
  • Simulink
  • Student Software
  • Hardware Support
  • File Exchange

Try or Buy

  • Downloads
  • Trial Software
  • Contact Sales
  • Pricing and Licensing
  • How to Buy

Learn to Use

  • Documentation
  • Tutorials
  • Examples
  • Videos and Webinars
  • Training

Get Support

  • Installation Help
  • MATLAB Answers
  • Consulting
  • License Center
  • Contact Support

About MathWorks

  • Careers
  • Newsroom
  • Social Mission
  • Customer Stories
  • About MathWorks
  • Select a Web Site United States
  • Trust Center
  • Trademarks
  • Privacy Policy
  • Preventing Piracy
  • Application Status

© 1994-2022 The MathWorks, Inc.

  • Facebook
  • Twitter
  • Instagram
  • YouTube
  • LinkedIn
  • RSS

Join the conversation