irf
Generate vector autoregression (VAR) model impulse responses
Syntax
Description
The irf
function returns the dynamic response, or the impulse response
function (IRF), to a one-standard-deviation shock to each variable in a VAR(p)
model. A fully specified varm
model object characterizes the VAR
model.
To estimate or plot the IRF of a dynamic linear model characterized by structural,
autoregression, or moving average coefficient matrices, see armairf
.
IRFs trace the effects of an innovation shock to one variable on the response of all
variables in the system. In contrast, the forecast error variance decomposition (FEVD)
provides information about the relative importance of each innovation in affecting all
variables in the system. To estimate the FEVD of a VAR model characterized by a
varm
model object, see fevd
.
You can supply optional data, such as a presample, as a numeric array, table, or
timetable. However, all specified input data must be the same data type. When the input model
is estimated (returned by estimate
), supply the same data type as the data
used to estimate the model. The data type of the outputs matches the data type of the
specified input data.
returns a numeric array containing the orthogonalized IRF of the response variables that
compose the VAR(p) model Response
= irf(Mdl
)Mdl
, characterized by a
fully specified varm
model object.
irf
shocks variables at time 0, and returns the IRF for
times 0 through 19.
If Mdl
is an estimated model (returned by estimate
) fit to a numeric matrix of input response data, this syntax
applies.
returns numeric arrays when all optional input data are numeric arrays. For example,
Response
= irf(Mdl
,Name=Value
)irf(Mdl,NumObs=10,Method="generalized")
specifies estimating a
generalized IRF for 10 time points starting at time 0, during which
irf
applies the shock.
If Mdl
is an estimated model fit to a numeric matrix of input
response data, this syntax applies.
[
returns numeric arrays of lower Response
,Lower
,Upper
] = irf(___)Lower
and upper
Upper
95% confidence bounds for confidence intervals on the true
IRF, for each period and variable in the IRF, using any input argument combination in the
previous syntaxes. By default, irf
estimates confidence
bounds by conducting Monte Carlo simulation.
If Mdl
is an estimated model fit to a numeric matrix of input
response data, this syntax applies.
If Mdl
is a custom varm
model object (an object not returned by estimate
or modified after estimation), irf
can
require a sample size for the simulation SampleSize
or presample
responses Y0
.
returns the table or
timetable Tbl
= irf(___)Tbl
containing the IRFs and, optionally, corresponding 95%
confidence bounds, of the response variables that compose the VAR(p)
model Mdl
. The variables in Tbl
correspond to the
variables in the system shocked at time 0. Each variable contains a matrix with columns
corresponding to the IRFs of the variables in the system. (since R2022b)
If you set at least one name-value argument that controls the 95% confidence bounds on
the IRF, Tbl
also contains a variable for each of the lower and upper
bounds. For example, Tbl
contains confidence bounds when you set the
NumPaths
name-value argument.
If Mdl
is an estimated model fit to a table or timetable of input
response data, this syntax applies.
Examples
Specify Data in Numeric Matrix When Plotting IRF
Fit a 4-D VAR(2) model to Danish money and income rate series data in a numeric matrix. Then, estimate and plot the orthogonalized IRF from the estimated model.
Load the Danish money and income data set.
load Data_JDanish
For more details on the data set, enter Description
at the command line.
Assuming that the series are stationary, create a varm
model object that represents a 4-D VAR(2) model. Specify the variable names.
Mdl = varm(4,2); Mdl.SeriesNames = DataTable.Properties.VariableNames;
Mdl
is a varm
model object specifying the structure of a 4-D VAR(2) model; it is a template for estimation.
Fit the VAR(2) model to the numeric matrix of time series data Data
.
Mdl = estimate(Mdl,Data);
Mdl
is a fully specified varm
model object representing an estimated 4-D VAR(2) model.
Estimate the orthogonalized IRF from the estimated VAR(2) model.
Response = irf(Mdl);
Response
is a 20-by-4-by-4 array representing the IRF of Mdl
. Rows correspond to consecutive time points from time 0 to 19, columns correspond to variables receiving a one-standard-deviation innovation shock at time 0, and pages correspond to responses of variables to the variable being shocked. Mdl.SeriesNames
specifies the variable order.
Display the IRF of the bond rate (variable 3, IB
) when the log of real income (variable 2, Y
) is shocked at time 0.
Response(:,2,3)
ans = 20×1
0.0018
0.0048
0.0054
0.0051
0.0040
0.0029
0.0019
0.0011
0.0006
0.0003
⋮
Plot the IRFs of all series on separate plots by passing the estimated AR coefficient matrices and innovations covariance matrix of Mdl
to armairf
.
armairf(Mdl.AR,[],InnovCov=Mdl.Covariance);
Each plot shows the four IRFs of a variable when all other variables are shocked at time 0. Mdl.SeriesNames
specifies the variable order.
Estimate Generalized IRF of VAR Model
Consider the 4-D VAR(2) model in Specify Data in Numeric Matrix When Plotting IRF. Estimate the generalized IRF of the system for 50 periods.
Load the Danish money and income data set, and then estimate the VAR(2) model.
load Data_JDanish
Mdl = varm(4,2);
Mdl.SeriesNames = DataTable.Properties.VariableNames;
Mdl = estimate(Mdl,DataTable.Series);
Estimate the generalized IRF from the estimated VAR(2) model.
Response = irf(Mdl,Method="generalized",NumObs=50);
Response
is a 50-by-4-by-4 array representing the generalized IRF of Mdl
.
Plot the generalized IRF of the bond rate when real income is shocked at time 0.
figure; plot(0:49,Response(:,2,3)) title("IRF of IB When Y Is Shocked") xlabel("Observation Time") ylabel("Response") grid on
The bond rate fades slowly when real income is shocked at time 0.
Specify Data in Timetables When Computing IRF and Confidence Intervals
Since R2022b
Fit a 4-D VAR(2) model to Danish money and income rate series data in a numeric matrix. Then, estimate and plot the orthogonalized IRF from the estimated model.
Load the Danish money and income data set.
load Data_JDanish
The data set includes four time series in the timetable DataTimeTable
. For more details on the data set, enter Description
at the command line.
Assuming that the series are stationary, create a varm
model object that represents a 4-D VAR(2) model. Specify the variable names.
Mdl = varm(4,2); Mdl.SeriesNames = DataTimeTable.Properties.VariableNames;
Mdl
is a varm
model object specifying the structure of a 4-D VAR(2) model; it is a template for estimation.
Fit the VAR(2) model to the data set.
EstMdl = estimate(Mdl,DataTimeTable);
Mdl
is a fully specified varm
model object representing an estimated 4-D VAR(2) model.
Estimate the orthogonalized IRF and corresponding 95% confidence intervals from the estimated VAR(2) model. To return confidence intervals, you must set a name-value argument that controls confidence intervals, for example, Confidence
. Set Confidence
to 0.95
.
rng(1); % For reproducibility
Tbl = irf(EstMdl,Confidence=0.95);
size(Tbl)
ans = 1×2
20 12
Tbl
Tbl=20×12 timetable
Time M2_IRF Y_IRF IB_IRF ID_IRF M2_IRF_LowerBound Y_IRF_LowerBound IB_IRF_LowerBound ID_IRF_LowerBound M2_IRF_UpperBound Y_IRF_UpperBound IB_IRF_UpperBound ID_IRF_UpperBound
___________ _____________________________________________________ _______________________________________________________ ___________________________________________________ _______________________________________________________ _______________________________________________________ _______________________________________________________ ______________________________________________________ _______________________________________________________ _____________________________________________________ ___________________________________________________ ____________________________________________________ ___________________________________________________
01-Jul-1974 0.025385 0.011979 -0.0030299 -0.00029592 0 0.017334 0.0017985 -0.00060941 0 0 0.0072384 0.0011766 0 0 0 0.0047648 0.017729 0.0062931 -0.0046236 -0.0012223 0 0.012192 -0.00017736 -0.0016259 0 0 0.0046542 -0.00050518 0 0 0 0.00322 0.02713 0.016442 -0.00074788 0.0010392 0 0.019303 0.0037597 0.00088073 0 0 0.0080468 0.002298 0 0 0 0.0049936
01-Oct-1974 0.019597 0.017604 -0.0024059 -0.00052605 0.0022668 0.014588 0.0047558 0.00037877 -0.011013 -0.0010791 0.0096387 0.0036033 -0.0014511 -0.0044686 -1.6666e-05 0.0043446 0.0088617 0.0075327 -0.0054155 -0.0024484 -0.0045762 0.0055602 0.00085487 -0.0014949 -0.015821 -0.0059937 0.0044639 0.00097209 -0.0072913 -0.0092174 -0.0021639 0.001595 0.024652 0.020779 0.00056005 0.0014407 0.0069932 0.017056 0.0070093 0.0021859 -0.0048396 0.0046483 0.010957 0.0051531 0.0043279 0.00045888 0.0017342 0.0050611
01-Jan-1975 0.023011 0.01432 -0.0014045 -0.00051972 -0.0043703 0.011341 0.005376 0.0021556 -0.019326 -0.0046725 0.010182 0.004395 0.0017534 -0.0060605 -0.0011601 0.002806 0.011414 0.0045521 -0.004882 -0.0024604 -0.01291 -0.00094466 -0.00017957 -0.00068506 -0.021662 -0.011 0.0035604 0.0011887 -0.0069887 -0.01257 -0.0045524 -0.00041328 0.029914 0.016987 0.0018906 0.0011012 0.0051311 0.013943 0.0080383 0.0041762 -0.0068581 0.003094 0.012053 0.0057324 0.0082731 0.0013124 0.0025533 0.0042406
01-Apr-1975 0.019864 0.01344 -0.0014933 -4.4254e-06 -0.0078183 0.0062247 0.0050662 0.0027626 -0.025548 -0.0070059 0.009493 0.0043074 0.0045597 -0.004589 -0.002223 0.0011591 0.0063539 0.0025976 -0.0054684 -0.0021938 -0.017355 -0.0064979 -0.00123 0.00010743 -0.029292 -0.013974 0.0015562 0.00077995 -0.0081444 -0.011287 -0.0062556 -0.0022002 0.028924 0.015926 0.0014925 0.0012851 0.0059606 0.011209 0.0080886 0.0047651 -0.0063978 0.0028959 0.012097 0.0057966 0.014418 0.0038715 0.0033635 0.0023838
01-Jul-1975 0.019419 0.011244 -0.0015969 -3.4305e-05 -0.010187 0.0028147 0.0039998 0.0026985 -0.029124 -0.0084906 0.0084798 0.0037481 0.0077423 -0.0025063 -0.0026634 -0.00013404 0.005327 -0.00049621 -0.0054593 -0.0021455 -0.022716 -0.0081187 -0.0028733 -0.00042378 -0.034992 -0.015799 0.00056474 0.00020164 -0.0078458 -0.010846 -0.0068023 -0.0035519 0.029407 0.014405 0.001692 0.0015767 0.0087664 0.010134 0.0075162 0.0043343 -0.0057691 0.0018746 0.012047 0.0055231 0.020043 0.0064893 0.0029097 0.001343
01-Oct-1975 0.018532 0.01016 -0.0019436 -0.00013964 -0.010448 0.00049217 0.0028587 0.0021692 -0.031107 -0.0092773 0.0074784 0.0031474 0.0097242 -0.00029442 -0.0026358 -0.00082626 0.001818 -0.0004023 -0.0058779 -0.0022755 -0.023734 -0.0077482 -0.0042795 -0.00098779 -0.038594 -0.016547 -0.00011469 -0.00064435 -0.0095859 -0.0070065 -0.0059945 -0.0034737 0.030136 0.013705 0.0016763 0.0017479 0.011566 0.0082498 0.0057995 0.0033017 -0.0044473 0.0013279 0.011642 0.0050999 0.022978 0.0090112 0.0027824 0.0014644
01-Jan-1976 0.018426 0.0092868 -0.0022099 -0.00036763 -0.0097658 -0.00071481 0.0018519 0.0015618 -0.032019 -0.0098054 0.0066319 0.002661 0.010735 0.0013489 -0.0022958 -0.001066 0.00094487 -0.0010919 -0.0057706 -0.0026426 -0.023367 -0.0091729 -0.0049467 -0.0014946 -0.042002 -0.016681 -0.00084973 -0.0010919 -0.010268 -0.0059067 -0.0046107 -0.0030697 0.030831 0.014467 0.0020979 0.0014645 0.013995 0.0070356 0.0042604 0.0028084 -0.0042527 0.0021613 0.010919 0.0047273 0.024747 0.010363 0.0021819 0.00073538
01-Apr-1976 0.018347 0.0088274 -0.002408 -0.00055954 -0.0085284 -0.0013241 0.0011035 0.001029 -0.032301 -0.010245 0.0059331 0.0023208 0.010834 0.0024299 -0.0018575 -0.0010181 0.00088792 -0.00087384 -0.0057043 -0.0027239 -0.022321 -0.0095626 -0.0046415 -0.0016955 -0.044772 -0.015403 -0.0014757 -0.00074988 -0.010505 -0.0057904 -0.0042961 -0.0025666 0.030874 0.015059 0.0021942 0.0012385 0.01511 0.0075202 0.0041588 0.0022807 -0.0018926 0.0020667 0.0099711 0.0041106 0.027227 0.010447 0.0026554 0.0011517
01-Jul-1976 0.018349 0.0085007 -0.0025003 -0.00070381 -0.0072023 -0.0015783 0.00059083 0.00064004 -0.032139 -0.010662 0.0053454 0.0020863 0.010389 0.0030152 -0.0014396 -0.00084984 0.00081535 -0.00056917 -0.0054989 -0.0027904 -0.020095 -0.0090132 -0.003905 -0.0019258 -0.046259 -0.016859 -0.0018945 -0.0010315 -0.0088981 -0.0047543 -0.0042238 -0.0017878 0.030856 0.014085 0.0023174 0.0013691 0.017564 0.0079639 0.0040872 0.0017655 -0.001588 0.0020803 0.0088559 0.0036667 0.02646 0.010048 0.0026267 0.0012534
01-Oct-1976 0.018261 0.0082681 -0.0025175 -0.00078515 -0.0059528 -0.0016715 0.000265 0.00038128 -0.031642 -0.01103 0.0048331 0.0019104 0.0096565 0.0032746 -0.0011032 -0.00066034 -0.0011251 -0.00075733 -0.0050727 -0.0026529 -0.019957 -0.0091831 -0.0037003 -0.0015265 -0.046571 -0.018406 -0.0023099 -0.0010146 -0.0087836 -0.0043276 -0.0035229 -0.0015206 0.031925 0.013921 0.0023499 0.0013534 0.017285 0.0080779 0.0037871 0.0016071 0.00034958 0.0018116 0.0082019 0.0031525 0.025188 0.0098717 0.0023763 0.001372
01-Jan-1977 0.018088 0.0080578 -0.0024803 -0.00082067 -0.004866 -0.0016783 6.7351e-05 0.00021975 -0.030874 -0.011308 0.0043776 0.0017587 0.0088385 0.0033353 -0.00085828 -0.00049952 -0.0023654 -0.00054861 -0.0046959 -0.0023017 -0.018881 -0.0083688 -0.0036323 -0.0013151 -0.045822 -0.019143 -0.0022457 -0.00076165 -0.0096651 -0.0046474 -0.0033535 -0.001605 0.031832 0.013992 0.0023109 0.0011487 0.01618 0.0079136 0.0033058 0.0015065 0.0014169 0.0019553 0.0074233 0.0026903 0.023693 0.0092439 0.0022507 0.0010427
01-Apr-1977 0.01782 0.0078585 -0.0024126 -0.00082488 -0.0039472 -0.0016348 -4.6051e-05 0.00012029 -0.029898 -0.011467 0.0039728 0.0016154 0.0080434 0.0032901 -0.00069265 -0.00038034 -0.0041445 -0.0009108 -0.0046233 -0.0021475 -0.017842 -0.0074943 -0.0036166 -0.0012714 -0.044148 -0.019166 -0.0023327 -0.00078836 -0.010263 -0.0046773 -0.0028019 -0.001797 0.030983 0.013903 0.0022172 0.001152 0.014886 0.007478 0.0027978 0.0013601 0.0017628 0.0019984 0.0059992 0.0024748 0.023083 0.0093155 0.0021594 0.00090656
01-Jul-1977 0.01748 0.0076612 -0.0023288 -0.00081178 -0.0031853 -0.0015527 -0.00010551 5.8177e-05 -0.028778 -0.011497 0.0036184 0.001477 0.007324 0.0031905 -0.00058632 -0.00029882 -0.0055294 -0.00154 -0.0045625 -0.0019225 -0.017729 -0.00744 -0.0034336 -0.0012351 -0.041703 -0.018635 -0.0029266 -0.00097794 -0.010567 -0.004571 -0.0030526 -0.00144 0.029897 0.013651 0.002083 0.0011265 0.015725 0.0067952 0.0028631 0.0012628 0.0032766 0.0021382 0.0054534 0.00231 0.021 0.0091161 0.00197 0.000865
01-Oct-1977 0.017084 0.0074669 -0.0022386 -0.00078982 -0.0025611 -0.0014412 -0.00012965 1.837e-05 -0.027577 -0.01141 0.003315 0.0013467 0.0066953 0.0030638 -0.00052096 -0.00024515 -0.0059883 -0.0019006 -0.0045009 -0.0017518 -0.016735 -0.0070905 -0.0030476 -0.0012138 -0.03866 -0.017655 -0.0023904 -0.0010579 -0.010714 -0.0044868 -0.0030057 -0.0010935 0.028693 0.01332 0.0015194 0.0010569 0.016655 0.0061735 0.0029008 0.0010539 0.0049304 0.0023071 0.0052074 0.0022951 0.019005 0.008691 0.0018979 0.00088102
01-Jan-1978 0.016649 0.007275 -0.0021468 -0.00076393 -0.0020585 -0.0013098 -0.00013023 -6.9227e-06 -0.02635 -0.011223 0.0030608 0.0012284 0.006156 0.0029232 -0.00048251 -0.00021015 -0.0067654 -0.0016931 -0.0044291 -0.0016366 -0.016779 -0.0072429 -0.0028373 -0.0011991 -0.035195 -0.016242 -0.0025182 -0.0010499 -0.010659 -0.0043064 -0.002775 -0.0010409 0.028206 0.01294 0.0015156 0.00095142 0.016305 0.0058332 0.0026818 0.00094436 0.0054449 0.0022641 0.0053236 0.0021337 0.018369 0.0079906 0.0017187 0.00082592
01-Apr-1978 0.016187 0.0070851 -0.0020565 -0.00073641 -0.0016627 -0.0011692 -0.00011514 -2.1687e-05 -0.025141 -0.010963 0.0028515 0.001125 0.0056974 0.0027764 -0.00046133 -0.00018714 -0.0053812 -0.0015885 -0.0043428 -0.0016435 -0.016571 -0.007324 -0.0025033 -0.0011496 -0.033556 -0.015142 -0.0025535 -0.0010552 -0.010407 -0.0040787 -0.0025947 -0.0011176 0.027675 0.012605 0.0015485 0.00082164 0.015764 0.0056146 0.0024931 0.0010281 0.0054922 0.0019958 0.0054463 0.0021499 0.019244 0.0078422 0.00157 0.00071951
⋮
Tbl
is a timetable with 20 rows, representing the periods in the IRF, and 12 variables. Each variable is a 20-by-4 matrix of the IRF or confidence bound associated with a variable in the model EstMdl
. For example, Tbl.M2_IRF(:,2)
is the IRF of Mdl.SeriesNames(2)
, which is the variable Y
, resulting from a one-standard-deviation shock on 01-Jul-1974
(period 0) to M2
. [Tbl.M2_IRF_LowerBound(:,2)
,Tbl.M2_IRF_UpperBound(:,2)
] are the corresponding 95% confidence intervals.
Plot the IRF of Y
and its 95% confidence interval resulting from a one-standard-deviation shock on 01-Jul-1974
to M2
.
idxM2 = startsWith(Tbl.Properties.VariableNames,"M2"); M2IRF = Tbl(:,idxM2); shockIdx = 2; figure hold on plot(M2IRF.Time,M2IRF.M2_IRF(:,shockIdx),"-o") plot(M2IRF.Time,[M2IRF.M2_IRF_LowerBound(:,shockIdx) ... M2IRF.M2_IRF_UpperBound(:,shockIdx)],"-o",Color="r") legend("IRF","95% confidence interval") title("Y IRF, Shock to M2") hold off
Monte Carlo Confidence Intervals on True IRF
Consider the 4-D VAR(2) model in Specify Data in Numeric Matrix When Plotting IRF. Estimate and plot its orthogonalized IRF and 95% Monte Carlo confidence intervals on the true IRF.
Load the Danish money and income data set, then estimate the VAR(2) model.
load Data_JDanish
Mdl = varm(4,2);
Mdl.SeriesNames = DataTable.Properties.VariableNames;
Mdl = estimate(Mdl,DataTable.Series);
Estimate the IRF and corresponding 95% Monte Carlo confidence intervals from the estimated VAR(2) model.
rng(1); % For reproducibility
[Response,Lower,Upper] = irf(Mdl);
Response
, Lower
, and Upper
are 20-by-4-by-4 arrays representing the orthogonalized IRF of Mdl
and corresponding lower and upper bounds of the confidence intervals. For all arrays, rows correspond to consecutive time points from time 0 to 19, columns correspond to variables receiving a one-standard-deviation innovation shock at time 0, and pages correspond to responses of variables to the variable being shocked. Mdl.SeriesNames
specifies the variable order.
Plot the orthogonalized IRF with its confidence bounds of the bond rate when real income is shocked at time 0.
irfshock2resp3 = Response(:,2,3); IRFCIShock2Resp3 = [Lower(:,2,3) Upper(:,2,3)]; figure; h1 = plot(0:19,irfshock2resp3); hold on h2 = plot(0:19,IRFCIShock2Resp3,"r--"); legend([h1 h2(1)],["IRF" "95% Confidence Interval"]) xlabel("Time Index"); ylabel("Response"); title("IRF of IB When Y Is Shocked"); grid on hold off
The effect of the impulse to real income on the bond rate fades after 10 periods.
Bootstrap Confidence Intervals on True IRF
Consider the 4-D VAR(2) model in Specify Data in Numeric Matrix When Plotting IRF. Estimate and plot its orthogonalized IRF and 90% bootstrap confidence intervals on the true IRF.
Load the Danish money and income data set, and then estimate the VAR(2) model. Return the residuals from model estimation.
load Data_JDanish Mdl = varm(4,2); Mdl.SeriesNames = DataTable.Properties.VariableNames; [Mdl,~,~,Res] = estimate(Mdl,DataTable.Series); T = size(DataTable,1) % Total sample size
T = 55
n = size(Res,1) % Effective sample size
n = 53
Res
is a 53-by-4 array of residuals. Columns correspond to the variables in Mdl.SeriesNames
. The estimate
function requires Mdl.P
= 2 observations to initialize a VAR(2) model for estimation. Because presample data (Y0
) is unspecified, estimate
takes the first two observations in the specified response data to initialize the model. Therefore, the resulting effective sample size is T
– Mdl.P
= 53, and rows of Res
correspond to the observation indices 3 through T
.
Estimate the orthogonalized IRF and corresponding 90% bootstrap confidence intervals from the estimated VAR(2) model. Draw 500 paths of length n
from the series of residuals.
rng(1); % For reproducibility
[Response,Lower,Upper] = irf(Mdl,E=Res,NumPaths=500,Confidence=0.9);
Plot the orthogonalized IRF with its confidence bounds of the bond rate when real income is shocked at time 0.
irfshock2resp3 = Response(:,2,3); IRFCIShock2Resp3 = [Lower(:,2,3) Upper(:,2,3)]; figure; h1 = plot(0:19,irfshock2resp3); hold on h2 = plot(0:19,IRFCIShock2Resp3,"r--"); legend([h1 h2(1)],["IRF" "90% confidence interval"]) xlabel("Time Index") ylabel("Response") title("IRF of IB When Y Is Shocked"); grid on hold off
The effect of the impulse to real income on the bond rate fades after 10 periods.
Input Arguments
Mdl
— VAR model
varm
model object
VAR model, specified as a varm
model object created by varm
or estimate
. Mdl
must be fully specified.
If Mdl
is an estimated model (returned by estimate
) , you must supply any optional data using the same data type as the input response data, to which the model is fit.
If Mdl
is a custom varm
model object (an object not returned by estimate
or modified after estimation), irf
can require a sample size for the simulation SampleSize
or presample responses Y0
.
Name-Value Arguments
Specify optional pairs of arguments as
Name1=Value1,...,NameN=ValueN
, where Name
is
the argument name and Value
is the corresponding value.
Name-value arguments must appear after other arguments, but the order of the
pairs does not matter.
Before R2021a, use commas to separate each name and value, and enclose
Name
in quotes.
Example: irf(Mdl,NumObs=10,Method="generalized")
specifies estimating
a generalized IRF for 10 time points starting at time 0, during which
irf
applies the shock.
NumObs
— Number of periods
20
(default) | positive integer
Number of periods for which irf
computes
the IRF, specified as a positive integer.
NumObs
specifies the number of
observations to include in the IRF (the number of rows in
Response
or
Tbl
).
Example: NumObs=10
specifies the inclusion of 10
time points in the IRF starting at time 0, during which
irf
applies the shock,
and ending at period 9.
Data Types: double
Method
— IRF computation method
"orthogonalized"
(default) | "generalized"
| character vector
IRF computation method, specified as a value in this table.
Value | Description |
---|---|
"orthogonalized" | Compute impulse responses using orthogonalized,
one-standard-deviation innovation shocks.
irf uses the Cholesky factorization of
Mdl.Covariance for orthogonalization. |
"generalized" | Compute impulse responses using one-standard-deviation innovation shocks. |
Example: Method="generalized"
Data Types: string
| char
NumPaths
— Number of sample paths
100
(default) | positive integer
Number of sample paths (trials) to generate, specified as a positive integer.
Example: NumPaths=1000
generates 1000
sample
paths from which the software derives the confidence bounds.
Data Types: double
SampleSize
— Number of observations for Monte Carlo simulation or bootstrap per sample path
positive integer
Number of observations for the Monte Carlo simulation or bootstrap per sample path, specified as a positive integer.
Example: If you specify SampleSize=100
and do not specify the
E
name-value argument, the software estimates confidence bounds
from NumPaths
random paths of length 100
from
Mdl
.
Example: If you specify SampleSize=100,E=Res
, the software
resamples, with replacement, 100
observations (rows) from
Res
to form a sample path of innovations to filter through
Mdl
. The software forms NumPaths
random
sample paths from which it derives confidence bounds.
Data Types: double
Y0
— Presample response data
numeric matrix
Presample response data that provides initial values for model estimation during the
simulation, specified as a numpreobs
-by-numseries
numeric matrix. Use Y0
only in the following situations:
numpreobs
is the number of presample observations.
numseries
is Mdl.NumSeries
, the dimensionality of the
input model.
Each row is a presample observation, and measurements in each row occur simultaneously.
The last row contains the latest presample observation. numpreobs
is the
number of specified presample responses and it must be at least Mdl.P
. If
you supply more rows than necessary, irf
uses the latest
Mdl.P
observations only.
numseries
is the dimensionality of the input VAR model
Mdl.NumSeries
. Columns must correspond to the response variables in
Mdl.SeriesNames
.
The following situations determine the default or whether presample response data is required.
Data Types: double
Presample
— Presample data
table | timetable
Since R2022b
Presample data that provides initial values for the model Mdl
,
specified as a table or timetable with numprevars
variables and
numpreobs
rows. Use Presample
only in the
following situations:
Each row is a presample observation, and measurements in each row occur
simultaneously. numpreobs
must be at least Mdl.P
.
If you supply more rows than necessary, irf
uses the latest
Mdl.P
observations only.
Each variable is a numpreobs
numeric vector representing one path.
To control presample variable selection, see the optional
PresampleResponseVariables
name-value argument.
If Presample
is a timetable, all the following conditions must be true:
Presample
must represent a sample with a regular datetime time step (seeisregular
).The datetime vector of sample timestamps
Presample.Time
must be ascending or descending.
If Presample
is a table, the last row contains the latest
presample observation.
The following situations determine the default or whether presample response data is required.
If
Mdl
is an unmodified estimated model,irf
setsPresample
to the presample response data used for estimation by default (see thePresample
name-value argument ofestimate
).If
Mdl
is a custom model (for example, you modify a model after estimation by using dot notation) and you return confidence bounds in the table or timetableTbl
, you must specifyPresample
.
PresampleResponseVariables
— Variables to select from Presample
to use for presample response data
string vector | cell vector of character vectors | vector of integers | logical vector
Since R2022b
Variables to select from Presample
to use for presample data, specified
as one of the following data types:
String vector or cell vector of character vectors containing
numseries
variable names inPresample.Properties.VariableNames
A length
numseries
vector of unique indices (integers) of variables to select fromPresample.Properties.VariableNames
A length
numprevars
logical vector, wherePresampleResponseVariables(
selects variablej
) = true
fromj
Presample.Properties.VariableNames
, andsum(PresampleResponseVariables)
isnumseries
PresampleResponseVariables
applies only when you specify
Presample
.
The selected variables must be numeric vectors and cannot contain missing values
(NaN
).
PresampleResponseNames
does not need to contain the same names as in
Mdl.SeriesNames
; irf
uses the data in
selected variable PresampleResponseVariables(
as a presample for j
)Mdl.SeriesNames(
.j
)
If the number of variables in Presample
matches
Mdl.NumSeries
, the default specifies all variables in
Presample
. If the number of variables in Presample
exceeds Mdl.NumSeries
, the default matches variables in
Presample
to names in Mdl.SeriesNames
.
Example: PresampleResponseVariables=["GDP" "CPI"]
Example: PresampleResponseVariables=[true false true false]
or
PresampleResponseVariable=[1 3]
selects the first and third table
variables for presample data.
Data Types: double
| logical
| char
| cell
| string
X
— Predictor data
numeric matrix
Predictor data xt for
estimating the model regression component during the simulation, specified as a numeric matrix
containing numpreds
columns. Use X
only in the following situations:
numpreds
is the number of predictor variables
(size(Mdl.Beta,2)
).
Each row corresponds to an observation, and measurements in each row
occur simultaneously. The last row contains the latest
observation. X
must have at least
SampleSize
rows. If you supply
more rows than necessary, irf
uses
only the latest observations. irf
does not use the regression component in the presample
period.
Columns correspond to individual predictor variables. All predictor variables are present in the regression component of each response equation.
To maintain model consistency when irf
estimates the confidence bounds, specify predictor data when Mdl
has a
regression component. If Mdl
is an estimated model, specify the predictor
data used during model estimation (see the X
name-value argument of estimate
).
By default, irf
excludes the regression
component from confidence bound estimation, regardless of its
presence in Mdl
.
Data Types: double
E
— Series of residuals et from which to draw bootstrap samples
numeric matrix
Series of residuals from which to draw bootstrap samples, specified as a
numperiods
-by-numseries
numeric matrix.
irf
assumes that E
is free of serial
correlation. Use E
only in the following situations:
Each column is the residual series corresponding to the response series names in
Mdl.SeriesNames
.
Each row corresponds to a period in the FEVD and the corresponding confidence bounds.
If Mdl
is an estimated varm
model object (an object returned by estimate
), you can specify E
as the inferred
residuals from estimation (see the E
output argument of
estimate
or infer
).
By default, irf
derives confidence bounds by conducting a
Monte Carlo simulation.
Data Types: double
InSample
— Time series data
table | timetable
Since R2022b
Time series data containing numvars
variables, including
numseries
variables of residuals
et to bootstrap or
numpreds
predictor variables
xt for the model regression component,
specified as a table or timetable. Use InSample
only in the
following situations:
Each variable is a single path of observations, which irf
applies to all NumPaths
sample paths. If you specify
Presample
, you must specify which variables are residuals and
predictors. See the ResidualVariables
and
PredictorVariables
name-value arguments.
Each row is an observation, and measurements in each row occur simultaneously.
InSample
must have at least SampleSize
rows. If you supply more rows than necessary, irf
uses only
the latest observations.
If InSample
is a timetable, the following conditions apply:
InSample
must represent a sample with a regular datetime time step (seeisregular
).The datetime vector
InSample.Time
must be ascending or descending.Presample
must immediately precedeInSample
, with respect to the sampling frequency.
If InSample
is a table, the last row contains the latest
observation.
By default, irf
derives confidence bounds by conducting a
Monte Carlo simulation and does not use the regression component, regardless of its
presence in Mdl
.
ResidualVariables
— Variables to select from InSample
to treat as residuals et for bootstrapping
string vector | cell vector of character vectors | vector of integers | logical vector
Since R2022b
Variables to select from InSample
to treat as residuals for
bootstrapping, specified as one of the following data types:
String vector or cell vector of character vectors containing
numseries
variable names inInSample.Properties.VariableNames
A length
numseries
vector of unique indices (integers) of variables to select fromInSample.Properties.VariableNames
A length
numvars
logical vector, whereResidualVariables(
selects variablej
) = true
fromj
InSample.Properties.VariableNames
, andsum(ResidualVariables)
isnumseries
Regardless, selected residual variable
is the residual series for
j
Mdl.SeriesNames(
.j
)
The selected variables must be numeric vectors and cannot contain missing values
(NaN
).
By default, irf
derives confidence bounds by conducting a
Monte Carlo simulation.
Example: ResidualVariables=["GDP_Residuals"
"CPI_Residuals"]
Example: ResidualVariables=[true false true false]
or
ResidualVariable=[1 3]
selects the first and third table variables as the
disturbance variables.
Data Types: double
| logical
| char
| cell
| string
PredictorVariables
— Variables to select from InSample
to treat as exogenous predictor variables xt
string vector | cell vector of character vectors | vector of integers | logical vector
Since R2022b
Variables to select from InSample
to treat as exogenous predictor
variables xt, specified as one of the following data types:
String vector or cell vector of character vectors containing
numpreds
variable names inInSample.Properties.VariableNames
A length
numpreds
vector of unique indices (integers) of variables to select fromInSample.Properties.VariableNames
A length
numvars
logical vector, wherePredictorVariables(
selects variablej
) = true
fromj
InSample.Properties.VariableNames
, andsum(PredictorVariables)
isnumpreds
Regardless, selected predictor variable
corresponds to the coefficients
j
Mdl.Beta(:,
.j
)
PredictorVariables
applies only when you specify
InSample
.
The selected variables must be numeric vectors and cannot contain missing values
(NaN
).
By default, irf
excludes the regression component, regardless
of its presence in Mdl
.
Example: PredictorVariables=["M1SL" "TB3MS" "UNRATE"]
Example: PredictorVariables=[true false true false]
or
PredictorVariable=[1 3]
selects the first and third table variables as
the response variables.
Data Types: double
| logical
| char
| cell
| string
Confidence
— Confidence level
0.95
(default) | numeric scalar in [0,1]
Confidence level for the confidence bounds, specified as a numeric scalar in the interval [0,1].
For each period, randomly drawn confidence intervals cover the true response 100*Confidence
% of the time.
The default value is 0.95
, which implies that the confidence bounds represent 95% confidence intervals.
Example: Confidence=0.9
specifies 90% confidence
intervals.
Data Types: double
Note
NaN
values inY0
,X
, andE
indicate missing data.irf
removes missing data from these arguments by list-wise deletion. For each argument, if a row contains at least oneNaN
,irf
removes the entire row.List-wise deletion reduces the sample size, can create irregular time series, and can cause
E
andX
to be unsynchronized.irf
issues an error when any table or timetable input contains missing values.
Output Arguments
Response
— IRF
numeric array
IRF of each variable, returned as a
numobs
-by-numseries
-by-numseries
numeric array. numobs
is the value of NumObs
.
Columns and pages correspond to the response variables in
Mdl.SeriesNames
.
irf
returns Response
only in the
following situations:
You supply optional data inputs as numeric matrices.
Mdl
is an estimated model fit to a numeric matrix of response data.
Response(
is the
impulse response of variable t
+
1,j
,k
)
at time
k
, attributable to a
one-standard-deviation innovation shock applied at time 0 to variable
t
, for
j
= 0, 1, ...,
t
numObs
– 1,
=
1,2,...,j
numseries
, and
=
1,2,...,k
numseries
. For example,
Response(1,2,3)
is the impulse response of variable
Mdl.SeriesName(3)
at time
= 0, attributable to an innovation
shock applied at time 0 to t
Mdl.SeriesName(2)
.
Lower
— Lower confidence bounds
numeric array
Lower confidence bounds, returned as a
numobs
-by-numseries
-by-numseries
numeric array. Elements of Lower
correspond to elements of
Response
.
irf
returns Lower
only in the
following situations:
You supply optional data inputs as numeric matrices.
Mdl
is an estimated model fit to a numeric matrix of response data.
Lower(
is the
lower bound of the t
+
1,j
,k
)100*Confidence
-th percentile interval on the
true impulse response of variable
at
time k
, attributable to a
one-standard-deviation innovation shock applied at time 0 to variable
t
. For example,
j
Lower(1,2,3)
is the lower bound of the confidence interval on the
true impulse response of variable Mdl.SeriesName(3)
at time
= 0, attributable to an
innovation shock applied at time 0 to t
Mdl.SeriesName(2)
.
Upper
— Upper confidence bounds
numeric array
Upper confidence bounds, returned as a
numobs
-by-numseries
-by-numseries
numeric array. Elements of Upper
correspond to elements of
Response
.
irf
returns Upper
only in the
following situations:
You supply optional data inputs as numeric matrices.
Mdl
is an estimated model fit to a numeric matrix of response data.
Upper(
is the
upper bound of the t
+
1,j
,k
)100*Confidence
-th percentile interval on the
true impulse response of variable
attime
k
, attributable to a
one-standard-deviation innovation shock applied at time 0 to variable
t
. For example,
j
Upper(1,2,3)
is the upper bound of the confidence interval on the
true impulse response of variable Mdl.SeriesName(3)
at time
= 0, attributable to an
innovation shock applied at time 0 to t
Mdl.SeriesName(2)
.
Tbl
— IRF and confidence bounds
table | timetable
Since R2022b
IRF and confidence bounds, returned as a table or timetable with
numobs
rows. irf
returns
Tbl
only in the following situations:
You supply optional data inputs as tables or timetables.
Mdl
is an estimated model fit to response data in a table or timetable.
Regardless, the data type of Tbl
is the same as the
data type of specified data.
Variables in Tbl
represent those response series being
shocked at time 0.
Variables containing IRFs have the following qualities:
For each response series in
Mdl.SeriesNames
,irf
names the corresponding variable
, whereResponseJ
_IRF
is the response series being shocked at time 0. For example, ifResponseJ
Mdl.Series(
isj
)GDP
, the variableGDP_IRF
contains the IRFs of all response series resulting from a shock toGDP
at time 0.Each variable contains a
numobs
-by-numseries
numeric matrix of resulting IRFs of all response series.numobs
is the value ofNumObs
andnumseries
is the value ofMdl.NumSeries
.ResponseJ
_IRF(
is the impulse response of variablet
+ 1,k
)
at timek
, attributable to a one-standard-deviation innovation shock applied at time 0 to variablet
, forResponseJ
= 0,1, ...,t
numObs
– 1,
= 1,2,...,J
numseries
, and
= 1,2,...,k
numseries
.
When you set at least one name-value argument that controls the confidence bounds,
irf
returns the lower and upper confidence bounds on the true IRF of the response series. Variables containing the IRF confidence bounds have the following qualities:For each IRF
,ResponseJ
_IRFirf
names the corresponding lower and upper bound variables
andResponseJ
_IRF_LowerBound
, respectively, whereResponseJ
_IRF_UpperBound
is the response series being shocked at time 0. For example, for the IRFs resulting from the a shock to response seriesResponseJ
GDP
,GDP_IRF
,Tbl
contains variables for the corresponding lower and upper confidence boundsGDP_IRF_LowerBound
andGDP_IRF_UpperBound
.Each confidence bound variable contains a
numobs
-by-numseries
numeric matrix.(
,ResponseJ
_IRF_LowerBound(t
,k
)
) is theResponseJ
_IRF_UpperBound(t
,k
)100*
Confidence
-th percentile confidence interval on the IRF of response series
at timek
, attributable to a one-standard-deviation innovation shock applied at time 0 to response seriest
, forResponseJ
= 0,1,…,t
numobs
– 1,
= 1,2,...,J
numseries
, and
= 1,2,...,k
numseries
.
If Tbl
is a timetable, the row order of Tbl
,
either ascending or descending, matches the row order of InSample
,
when you specify it. If you do not specify InSample
and you specify
Presample
, the row order of Tbl
is the
same as the row order of Presample
.
More About
Impulse Response Function
An impulse response function (IRF) of a time series model (or dynamic response of the system) measures the changes in the future responses of all variables in the system when a variable is shocked by an impulse. In other words, the IRF at time t is the derivative of the responses at time t with respect to an innovation at time t0 (the time that innovation was shocked), t ≥ t0.
Consider a numseries
-D VAR(p)
model for the multivariate response variable
yt. In lag operator notation, the infinite lag
MA representation of yt is
The general form of the IRF of yt shocked by an impulse to variable j by one standard deviation of its innovation m periods into the future is
ej is a selection vector of length
numseries
containing a 1 in element j and zeros elsewhere.For the orthogonalized IRF, where P is the lower triangular factor in the Cholesky factorization of Σ, and Ωm is the lag m coefficient of Ω(L).
For the generalized IRF, where σj is the standard deviation of innovation j.
The IRF is free of the model constant, regression component, and time trend.
Vector Autoregression Model
A vector autoregression (VAR) model is a stationary multivariate time series model consisting of a system of m equations of m distinct response variables as linear functions of lagged responses and other terms.
A VAR(p) model in difference-equation notation and in reduced form is
yt is a
numseries
-by-1 vector of values corresponding tonumseries
response variables at time t, where t = 1,...,T. The structural coefficient is the identity matrix.c is a
numseries
-by-1 vector of constants.Φj is a
numseries
-by-numseries
matrix of autoregressive coefficients, where j = 1,...,p and Φp is not a matrix containing only zeros.xt is a
numpreds
-by-1 vector of values corresponding tonumpreds
exogenous predictor variables.β is a
numseries
-by-numpreds
matrix of regression coefficients.δ is a
numseries
-by-1 vector of linear time-trend values.εt is a
numseries
-by-1 vector of random Gaussian innovations, each with a mean of 0 and collectively anumseries
-by-numseries
covariance matrix Σ. For t ≠ s, εt and εs are independent.
Condensed and in lag operator notation, the system is
where , Φ(L)yt is
the multivariate autoregressive polynomial, and I is the
numseries
-by-numseries
identity matrix.
Algorithms
If
Method
is"orthogonalized"
, then the resulting IRF depends on the order of the variables in the time series model. IfMethod
is"generalized"
, then the resulting IRF is invariant to the order of the variables. Therefore, the two methods generally produce different results.If
Mdl.Covariance
is a diagonal matrix, then the resulting generalized and orthogonalized IRFs are identical. Otherwise, the resulting generalized and orthogonalized IRFs are identical only when the first variable shocks all variables (for example, all else being the same, both methods yield the same value ofResponse(:,1,:)
).The predictor data in
X
orInSample
represents a single path of exogenous multivariate time series. If you specifyX
orInSample
and the modelMdl
has a regression component (Mdl.Beta
is not an empty array),irf
applies the same exogenous data to all paths used for confidence interval estimation.irf
conducts a simulation to estimate the confidence boundsLower
andUpper
or associated variables inTbl
.If you do not specify residuals by supplying
E
or usingInSample
,irf
conducts a Monte Carlo simulation by following this procedure:Simulate
NumPaths
response paths of lengthSampleSize
fromMdl
.Fit
NumPaths
models that have the same structure asMdl
to the simulated response paths. IfMdl
contains a regression component and you specify predictor data by supplyingX
or usingInSample
, thenirf
fits theNumPaths
models to the simulated response paths and the same predictor data (the same predictor data applies to all paths).Estimate
NumPaths
IRFs from theNumPaths
estimated models.For each time point t = 0,…,
NumObs
, estimate the confidence intervals by computing 1 –Confidence
andConfidence
quantiles (upper and lower bounds, respectively).
Otherwise,
irf
conducts a nonparametric bootstrap by following this procedure:Resample, with replacement,
SampleSize
residuals fromE
orInSample
. Perform this stepNumPaths
times to obtainNumPaths
paths.Center each path of bootstrapped residuals.
Filter each path of centered, bootstrapped residuals through
Mdl
to obtainNumPaths
bootstrapped response paths of lengthSampleSize
.Complete steps 2 through 4 of the Monte Carlo simulation, but replace the simulated response paths with the bootstrapped response paths.
References
[1] Hamilton, James D. Time Series Analysis. Princeton, NJ: Princeton University Press, 1994.
[2] Lütkepohl, Helmut. New Introduction to Multiple Time Series Analysis. New York, NY: Springer-Verlag, 2007.
[3] Pesaran, H. H., and Y. Shin. "Generalized Impulse Response Analysis in Linear Multivariate Models." Economic Letters. Vol. 58, 1998, pp. 17–29.
Version History
Introduced in R2019aR2022b: irf
accepts input data in tables and timetables, and return results in tables and timetables
In addition to accepting input data in numeric arrays,
irf
accepts input data in tables and timetables. irf
chooses default series on which to operate, but you can use the following name-value arguments to select variables.
Presample
specifies the input table or regular timetable of presample response data.PresampleResponseVariables
specifies the response series names fromPresample
.Insample
specifies the table or regular timetable of residual and predictor data to compute bootstrap estimates.ResidualVariables
specifies the residual series names inInSample
.PredictorVariables
specifies the predictor series inInSample
for a model regression component.
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: United States.
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
Asia Pacific
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)