estimateAssetMoments
Estimate mean and covariance of asset returns from data
Description
estimates mean and covariance of asset returns from data for a
obj = estimateAssetMoments(obj,AssetReturns)Portfolio object. For details on the workflow, see Portfolio Object Workflow.
estimates mean and covariance of asset returns from data for a Portfolio object
with additional options for one or more obj = estimateAssetMoments(___,Name,Value)Name,Value pair
arguments.
Examples
To illustrate using the estimateAssetMoments function, generate random samples of 120 observations of asset returns for four assets from the mean and covariance of asset returns in the variables m and C with the portsim function. The default behavior portsim creates simulated data with estimated mean and covariance identical to the input moments m and C. In addition to a return series created by the portsim function in the variable X, a price series is created in the variable Y:
m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;
X = portsim(m', C, 120);
Y = ret2tick(X);Given asset returns and prices in the variables X and Y from above, the following examples demonstrate equivalent ways to estimate asset moments for the Portfolio object. A Portfolio object is created in p with the moments of asset returns set directly in the Portfolio object and a second Portfolio object is created in q to obtain the mean and covariance of asset returns from asset return data in X using the estimateAssetMoments function.
m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;
X = portsim(m', C, 120);
p = Portfolio('mean',m,'covar',C);
q = Portfolio;
q = estimateAssetMoments(q, X);
[passetmean, passetcovar] = getAssetMoments(p)passetmean = 4×1
0.0042
0.0083
0.0100
0.0150
passetcovar = 4×4
0.0005 0.0003 0.0002 0
0.0003 0.0024 0.0017 0.0010
0.0002 0.0017 0.0048 0.0028
0 0.0010 0.0028 0.0102
[qassetmean, qassetcovar] = getAssetMoments(q)
qassetmean = 4×1
0.0042
0.0083
0.0100
0.0150
qassetcovar = 4×4
0.0005 0.0003 0.0002 0.0000
0.0003 0.0024 0.0017 0.0010
0.0002 0.0017 0.0048 0.0028
0.0000 0.0010 0.0028 0.0102
Notice how either approach yields the same moments. The default behavior of the estimateAssetMoments function is to work with asset returns. If, instead, you have asset prices, such as in the variable Y, the estimateAssetMoments function accepts a parameter name 'DataFormat' with a corresponding value set to 'prices' to indicate that the input to the method is in the form of asset prices and not returns (the default parameter value for 'DataFormat' is 'returns'). The following example compares direct assignment of moments in the Portfolio object p with estimated moments from asset price data in Y in the Portfolio object q:
m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;
X = portsim(m', C, 120);
Y = ret2tick(X);
p = Portfolio('mean',m,'covar',C);
q = Portfolio;
q = estimateAssetMoments(q, Y, 'dataformat', 'prices');
[passetmean, passetcovar] = getAssetMoments(p)passetmean = 4×1
0.0042
0.0083
0.0100
0.0150
passetcovar = 4×4
0.0005 0.0003 0.0002 0
0.0003 0.0024 0.0017 0.0010
0.0002 0.0017 0.0048 0.0028
0 0.0010 0.0028 0.0102
[qassetmean, qassetcovar] = getAssetMoments(q)
qassetmean = 4×1
0.0042
0.0083
0.0100
0.0150
qassetcovar = 4×4
0.0005 0.0003 0.0002 0.0000
0.0003 0.0024 0.0017 0.0010
0.0002 0.0017 0.0048 0.0028
0.0000 0.0010 0.0028 0.0102
To illustrate using the estimateAssetMoments function with AssetReturns data continued in a timetable object, use the CAPMuniverse.mat which contains a timetable object (AssetTimeTable) for returns data.
load CAPMuniverse
AssetsTimeTable.Properties;
head(AssetsTimeTable,5) Time AAPL AMZN CSCO DELL EBAY GOOG HPQ IBM INTC MSFT ORCL YHOO MARKET CASH
___________ _________ _________ _________ _________ _________ ____ _________ _________ _________ _________ _________ _________ _________ __________
03-Jan-2000 0.088805 0.1742 0.008775 -0.002353 0.12829 NaN 0.03244 0.075368 0.05698 -0.001627 0.054078 0.097784 -0.012143 0.00020522
04-Jan-2000 -0.084331 -0.08324 -0.05608 -0.08353 -0.093805 NaN -0.075613 -0.033966 -0.046667 -0.033802 -0.0883 -0.067368 -0.03166 0.00020339
05-Jan-2000 0.014634 -0.14877 -0.003039 0.070984 0.066875 NaN -0.006356 0.03516 0.008199 0.010567 -0.052837 -0.073363 0.011443 0.00020376
06-Jan-2000 -0.086538 -0.060072 -0.016619 -0.038847 -0.012302 NaN -0.063688 -0.017241 -0.05824 -0.033477 -0.058824 -0.10307 0.011743 0.00020266
07-Jan-2000 0.047368 0.061013 0.0587 -0.037708 -0.000964 NaN 0.028416 -0.004386 0.04127 0.013091 0.076771 0.10609 0.02393 0.00020157
Notice that GOOG has missing data (NaN), because it was not listed before Aug 2004. The estimateAssetMoments function has a name-value pair argument 'MissingData' that indicates with a Boolean value whether to use the missing data capabilities of Financial Toolbox™ software. The default value for 'MissingData' is false which removes all samples with NaN values. If, however, 'MissingData' is set to true, estimateAssetMoments uses the ECM algorithm to estimate asset moments.
r = Portfolio; r = estimateAssetMoments(r,AssetsTimeTable,'dataformat','returns','missingdata',true);
In addition, the estimateAssetMoments function also extracts asset names or identifiers from a timetable object when the name-value argument 'GetAssetList' set to true (its default value is false). If the 'GetAssetList' value is true, the timetable column identifiers are used to set the AssetList property of the Portfolio object. To show this, the formation of the Portfolio object r is repeated with the 'GetAssetList' flag set to true.
r = estimateAssetMoments(r,AssetsTimeTable,'GetAssetList',true);
disp(r.AssetList') {'AAPL' }
{'AMZN' }
{'CSCO' }
{'DELL' }
{'EBAY' }
{'GOOG' }
{'HPQ' }
{'IBM' }
{'INTC' }
{'MSFT' }
{'ORCL' }
{'YHOO' }
{'MARKET'}
{'CASH' }
Create a Portfolio object for three assets.
AssetMean = [ 0.0101110; 0.0043532; 0.0137058 ];
AssetCovar = [ 0.00324625 0.00022983 0.00420395;
0.00022983 0.00049937 0.00019247;
0.00420395 0.00019247 0.00764097 ];
AssetMean = AssetMean/12 AssetMean = 3×1
0.0008
0.0004
0.0011
AssetCovar = AssetCovar/12
AssetCovar = 3×3
10-3 ×
0.2705 0.0192 0.3503
0.0192 0.0416 0.0160
0.3503 0.0160 0.6367
X = portsim(AssetMean', AssetCovar, 120); p = Portfolio('AssetMean',AssetMean, 'AssetCovar', AssetCovar); p = setDefaultConstraints(p);
Use setBounds with semi-continuous constraints to set xi=0 or 0.02<=xi<=0.5 for all i=1,...NumAssets.
p = setBounds(p, 0.02, 0.5,'BoundType', 'Conditional', 'NumAssets', 3);
When working with a Portfolio object, the setMinMaxNumAssets function enables you to set up cardinality constraints for a long-only portfolio. This sets the cardinality constraints for the Portfolio object, where the total number of allocated assets satisfying the nonzero semi-continuous constraints are between MinNumAssets and MaxNumAssets. By setting MinNumAssets=MaxNumAssets=2, only two of the three assets are invested in the portfolio.
p = setMinMaxNumAssets(p, 2, 2);
Use estimateAssetMoments to estimate mean and covariance of asset returns from data for a Portfolio object.
p = estimateAssetMoments(p, X); [passetmean, passetcovar] = getAssetMoments(p)
passetmean = 3×1
0.0008
0.0004
0.0011
passetcovar = 3×3
10-3 ×
0.2705 0.0192 0.3503
0.0192 0.0416 0.0160
0.3503 0.0160 0.6367
The estimateAssetMoments function uses the MINLP solver to solve this problem. Use the setSolverMINLP function to configure the SolverType and options.
p.solverOptionsMINLP
ans = struct with fields:
MaxIterations: 1000
AbsoluteGapTolerance: 1.0000e-07
RelativeGapTolerance: 1.0000e-05
NonlinearScalingFactor: 1000
ObjectiveScalingFactor: 1000
Display: 'off'
CutGeneration: 'basic'
MaxIterationsInactiveCut: 30
ActiveCutTolerance: 1.0000e-07
IntMainSolverOptions: [1×1 optim.options.Intlinprog]
NumIterationsEarlyIntegerConvergence: 30
ExtendedFormulation: 0
NumInnerCuts: 10
NumInitialOuterCuts: 10
Input Arguments
Object for portfolio, specified using a Portfolio
object. For more information on creating a portfolio object, see
Data Types: object
Matrix, table, or timetable that contains asset
price data that can be converted to asset returns, specified by a
NumSamples-by-NumAssets matrix.
AssetReturns data can be:
NumSamples-by-NumAssetsmatrix.Table of
NumSamplesprices or returns at a given periodicity for a collection ofNumAssetsassetsTimetable object with
NumSamplesobservations andNumAssetstime series
Use the optional DataFormat argument to convert
AssetReturns input data that is asset prices into
asset returns. Be careful when using asset price data because portfolio
optimization usually requires total returns and not simply price
returns.
Data Types: double | table | timetable
Name-Value Arguments
Specify optional pairs of arguments as
Name1=Value1,...,NameN=ValueN, where Name is
the argument name and Value is the corresponding value.
Name-value arguments must appear after other arguments, but the order of the
pairs does not matter.
Before R2021a, use commas to separate each name and value, and enclose
Name in quotes.
Example: p =
estimateAssetMoments(p,Y,'dataformat','prices')
Flag to convert input data as prices into returns, specified as the
comma-separated pair consisting of 'DataFormat' and a
character vector with the values:
'Returns'— Data inAssetReturnscontains asset total returns.'Prices'— Data inAssetReturnscontains asset total return prices.
Data Types: char
Flag indicating whether to use ECM algorithm or excludes samples with
NaN values, specified as the comma-separated pair
consisting of 'MissingData' and a logical with a
value of true or false.
To handle time series with missing data (indicated with
NaN values), the MissingData
flag either uses the ECM algorithm to obtain maximum likelihood
estimates in the presences of NaN values or excludes
samples with NaN values. Since the default is
false, it is necessary to specify
MissingData as true to use the
ECM algorithm.
Acceptable values for MissingData are:
false— Do not use ECM algorithm to handleNaNvalues (excludeNaNvalues).true— Use ECM algorithm to handleNaNvalues.
For more information on the ECM algorithm, see ecmnmle and Multivariate Normal Regression.
Data Types: logical
Flag indicating which asset names to use for the asset list, specified
as the comma-separated pair consisting of
'GetAssetList' and a logical with a value of
true or false. Acceptable
values for GetAssetList are:
false— Do not extract or create asset names.true— Extract or create asset names from a table or timetable object.
If a table or timetable is passed into
this function using the AssetReturns argument and
the GetAssetList flag is true, the
column names from the table or timetable object are used as asset names
in obj.AssetList.
If a matrix is passed and the GetAssetList flag is
true, default asset names are created based on
the AbstractPortfolio property
defaultforAssetList, which is
'Asset'.
If the GetAssetList flag is
false, no action occurs, which is the default
behavior.
Data Types: logical
Output Arguments
Updated portfolio object, returned as a Portfolio
object. For more information on creating a portfolio object, see
Tips
You can also use dot notation to estimate the mean and covariance of asset returns from data.
obj = obj.estimateAssetMoments(AssetReturns);
Version History
Introduced in R2011aUsing a fints object for the AssetReturns
argument of estimateAssetMoments is not recommended. Use
timetable instead for financial time
series. For more information, see Convert Financial Time Series Objects (fints) to Timetables.
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)