Main Content

Orientation from accelerometer and gyroscope readings

The `imufilter`

System object™ fuses accelerometer and gyroscope sensor data to estimate device
orientation.

To estimate device orientation:

Create the

`imufilter`

object and set its properties.Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

returns an indirect Kalman
filter System object, `FUSE`

= imufilter`FUSE`

, for fusion of accelerometer and gyroscope data to
estimate device orientation. The filter uses a nine-element state vector to track error in
the orientation estimate, the gyroscope bias estimate, and the linear acceleration
estimate.

returns an `FUSE`

= imufilter(`'ReferenceFrame'`

,`RF`

)`imufilter`

filter System object that fuses accelerometer and gyroscope data to estimate device orientation
relative to the reference frame `RF`

. Specify `RF`

as `'NED'`

(North-East-Down) or `'ENU'`

(East-North-Up).
The default value is `'NED'`

.

sets each property `FUSE`

= imufilter(___,`Name,Value`

)`Name`

to the specified `Value`

.
Unspecified properties have default values.

`FUSE = imufilter('SampleRate',200,'GyroscopeNoise',1e-6)`

creates a System object, `FUSE`

, with a 200 Hz sample rate and gyroscope noise set
to 1e-6 radians per second squared.Unless otherwise indicated, properties are *nontunable*, which means you cannot change their
values after calling the object. Objects lock when you call them, and the
`release`

function unlocks them.

If a property is *tunable*, you can change its value at
any time.

For more information on changing property values, see System Design in MATLAB Using System Objects.

`SampleRate`

— Sample rate of input sensor data (Hz)`100`

(default) | positive finite scalarSample rate of the input sensor data in Hz, specified as a positive finite scalar.

**Tunable: **No

**Data Types: **`single`

| `double`

| `uint8`

| `uint16`

| `uint32`

| `uint64`

| `int8`

| `int16`

| `int32`

| `int64`

`DecimationFactor`

— Decimation factor`1`

(default) | positive integer scalarDecimation factor by which to reduce the sample rate of the input sensor data, specified as a positive integer scalar.

The number of rows of the inputs, `accelReadings`

and `gyroReadings`

,
must be a multiple of the decimation factor.

**Tunable: **No

**Data Types: **`single`

| `double`

| `uint8`

| `uint16`

| `uint32`

| `uint64`

| `int8`

| `int16`

| `int32`

| `int64`

`AccelerometerNoise`

— Variance of accelerometer signal noise ((m/s`0.00019247`

(default) | positive real scalarVariance of accelerometer signal noise in
(m/s^{2})^{2}, specified as a positive
real scalar.

**Tunable: **Yes

**Data Types: **`single`

| `double`

| `uint8`

| `uint16`

| `uint32`

| `uint64`

| `int8`

| `int16`

| `int32`

| `int64`

`GyroscopeNoise`

— Variance of gyroscope signal noise ((rad/s)`9.1385e-5`

(default) | positive real scalarVariance of gyroscope signal noise in (rad/s)^{2}, specified
as a positive real scalar.

**Tunable: **Yes

**Data Types: **`single`

| `double`

| `uint8`

| `uint16`

| `uint32`

| `uint64`

| `int8`

| `int16`

| `int32`

| `int64`

`GyroscopeDriftNoise`

— Variance of gyroscope offset drift ((rad/s)`3.0462e-13`

(default) | positive real scalarVariance of gyroscope offset drift in (rad/s)^{2}, specified
as a positive real scalar.

**Tunable: **Yes

**Data Types: **`single`

| `double`

| `uint8`

| `uint16`

| `uint32`

| `uint64`

| `int8`

| `int16`

| `int32`

| `int64`

`LinearAccelerationNoise`

— Variance of linear acceleration noise ((m/s`0.0096236`

(default) | positive real scalarVariance of linear acceleration noise in
(m/s^{2})^{2}, specified as a positive
real scalar. Linear acceleration is modeled as a lowpass filtered white noise
process.

**Tunable: **Yes

**Data Types: **`single`

| `double`

| `uint8`

| `uint16`

| `uint32`

| `uint64`

| `int8`

| `int16`

| `int32`

| `int64`

`LinearAcclerationDecayFactor`

— Decay factor for linear acceleration drift`0.5`

(default) | scalar in the range [0,1]Decay factor for linear acceleration drift, specified as a scalar in the range
[0,1]. If linear acceleration is changing quickly, set
`LinearAccelerationDecayFactor`

to a lower value. If linear
acceleration changes slowly, set `LinearAccelerationDecayFactor`

to a
higher value. Linear acceleration drift is modeled as a lowpass-filtered white noise
process.

**Tunable: **Yes

**Data Types: **`single`

| `double`

| `uint8`

| `uint16`

| `uint32`

| `uint64`

| `int8`

| `int16`

| `int32`

| `int64`

`InitialProcessNoise`

— Covariance matrix for process noise9-by-9 matrix

Covariance matrix for process noise, specified as a 9-by-9 matrix. The default is:

Columns 1 through 6 0.000006092348396 0 0 0 0 0 0 0.000006092348396 0 0 0 0 0 0 0.000006092348396 0 0 0 0 0 0 0.000076154354947 0 0 0 0 0 0 0.000076154354947 0 0 0 0 0 0 0.000076154354947 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Columns 7 through 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.009623610000000 0 0 0 0.009623610000000 0 0 0 0.009623610000000

The initial process covariance matrix accounts for the error in the process model.

**Data Types: **`single`

| `double`

| `uint8`

| `uint16`

| `uint32`

| `uint64`

| `int8`

| `int16`

| `int32`

| `int64`

`OrientationFormat`

— Output orientation format`'quaternion'`

(default) | `'Rotation matrix'`

Output orientation format, specified as `'quaternion'`

or
`'Rotation matrix'`

. The size of the output depends on the input
size, *N*, and the output orientation format:

`'quaternion'`

–– Output is an*N*-by-1`quaternion`

.`'Rotation matrix'`

–– Output is a 3-by-3-by-*N*rotation matrix.

**Data Types: **`char`

| `string`

`[`

fuses accelerometer and gyroscope readings to compute orientation and angular velocity
measurements. The algorithm assumes that the device is stationary before the first
call.`orientation`

,`angularVelocity`

] = FUSE(`accelReadings`

,`gyroReadings`

)

`accelReadings`

— Accelerometer readings in sensor body coordinate system
(m/sAccelerometer readings in the sensor body coordinate system in
m/s^{2}, specified as an *N*-by-3 matrix.
*N* is the number of samples, and the three columns of
`accelReadings`

represent the [*x*
*y*
*z*] measurements. Accelerometer readings are assumed to correspond
to the sample rate specified by the SampleRate
property.

**Data Types: **`single`

| `double`

`gyroReadings`

— Gyroscope readings in sensor body coordinate system (rad/s)Gyroscope readings in the sensor body coordinate system in rad/s, specified as an
*N*-by-3 matrix. *N* is the number of samples, and
the three columns of `gyroReadings`

represent the
[*x*
*y*
*z*] measurements. Gyroscope readings are assumed to correspond to
the sample rate specified by the SampleRate
property.

**Data Types: **`single`

| `double`

`orientation`

— Orientation that rotates quantities from global coordinate system to sensor body
coordinate systemOrientation that can rotate quantities from a global coordinate system to a body
coordinate system, returned as quaternions or an array. The size and type of
`orientation`

depends on whether the OrientationFormat
property is set to `'quaternion'`

or ```
'Rotation
matrix'
```

:

`'quaternion'`

–– The output is an*M*-by-1 vector of quaternions, with the same underlying data type as the inputs.`'Rotation matrix'`

–– The output is a 3-by-3-by-*M*array of rotation matrices the same data type as the inputs.

The number of input samples, *N*, and the DecimationFactor
property determine *M*.

You can use `orientation`

in a `rotateframe`

function to rotate quantities from a global coordinate system to a sensor body
coordinate system.

**Data Types: **`quaternion`

| `single`

| `double`

`angularVelocity`

— Angular velocity in sensor body coordinate system (rad/s) Angular velocity with gyroscope bias removed in the sensor body coordinate system
in rad/s, returned as an *M*-by-3 array. The number of input samples,
*N*, and the DecimationFactor
property determine *M*.

**Data Types: **`single`

| `double`

To use an object function, specify the
System object as the first input argument. For
example, to release system resources of a System object named `obj`

, use
this syntax:

release(obj)

Load the `rpy_9axis`

file, which contains recorded accelerometer, gyroscope, and magnetometer sensor data from a device oscillating in pitch (around *y*-axis), then yaw (around *z*-axis), and then roll (around *x*-axis). The file also contains the sample rate of the recording.

load 'rpy_9axis.mat' sensorData Fs accelerometerReadings = sensorData.Acceleration; gyroscopeReadings = sensorData.AngularVelocity;

Create an `imufilter`

System object™ with sample rate set to the sample rate of the sensor data. Specify a decimation factor of two to reduce the computational cost of the algorithm.

decim = 2; fuse = imufilter('SampleRate',Fs,'DecimationFactor',decim);

Pass the accelerometer readings and gyroscope readings to the `imufilter`

object, `fuse`

, to output an estimate of the sensor body orientation over time. By default, the orientation is output as a vector of quaternions.

q = fuse(accelerometerReadings,gyroscopeReadings);

Orientation is defined by the angular displacement required to rotate a parent coordinate system to a child coordinate system. Plot the orientation in Euler angles in degrees over time.

`imufilter`

fusion correctly estimates the change in orientation from an assumed north-facing initial orientation. However, the device's *x*-axis was pointing southward when recorded. To correctly estimate the orientation relative to the true initial orientation or relative to NED, use `ahrsfilter`

.

time = (0:decim:size(accelerometerReadings,1)-1)/Fs; plot(time,eulerd(q,'ZYX','frame')) title('Orientation Estimate') legend('Z-axis', 'Y-axis', 'X-axis') xlabel('Time (s)') ylabel('Rotation (degrees)')

Model a tilting IMU that contains an accelerometer and gyroscope using the `imuSensor`

System object™. Use ideal and realistic models to compare the results of orientation tracking using the `imufilter`

System object.

Load a struct describing ground-truth motion and a sample rate. The motion struct describes sequential rotations:

yaw: 120 degrees over two seconds

pitch: 60 degrees over one second

roll: 30 degrees over one-half second

roll: -30 degrees over one-half second

pitch: -60 degrees over one second

yaw: -120 degrees over two seconds

In the last stage, the motion struct combines the 1st, 2nd, and 3rd rotations into a single-axis rotation. The acceleration, angular velocity, and orientation are defined in the local NED coordinate system.

load y120p60r30.mat motion fs accNED = motion.Acceleration; angVelNED = motion.AngularVelocity; orientationNED = motion.Orientation; numSamples = size(motion.Orientation,1); t = (0:(numSamples-1)).'/fs;

Create an ideal IMU sensor object and a default IMU filter object.

IMU = imuSensor('accel-gyro','SampleRate',fs); aFilter = imufilter('SampleRate',fs);

In a loop:

Simulate IMU output by feeding the ground-truth motion to the IMU sensor object.

Filter the IMU output using the default IMU filter object.

orientation = zeros(numSamples,1,'quaternion'); for i = 1:numSamples [accelBody,gyroBody] = IMU(accNED(i,:),angVelNED(i,:),orientationNED(i,:)); orientation(i) = aFilter(accelBody,gyroBody); end release(aFilter)

Plot the orientation over time.

figure(1) plot(t,eulerd(orientation,'ZYX','frame')) xlabel('Time (s)') ylabel('Rotation (degrees)') title('Orientation Estimation -- Ideal IMU Data, Default IMU Filter') legend('Z-axis','Y-axis','X-axis')

Modify properties of your `imuSensor`

to model real-world sensors. Run the loop again and plot the orientation estimate over time.

IMU.Accelerometer = accelparams( ... 'MeasurementRange',19.62, ... 'Resolution',0.00059875, ... 'ConstantBias',0.4905, ... 'AxesMisalignment',2, ... 'NoiseDensity',0.003924, ... 'BiasInstability',0, ... 'TemperatureBias', [0.34335 0.34335 0.5886], ... 'TemperatureScaleFactor',0.02); IMU.Gyroscope = gyroparams( ... 'MeasurementRange',4.3633, ... 'Resolution',0.00013323, ... 'AxesMisalignment',2, ... 'NoiseDensity',8.7266e-05, ... 'TemperatureBias',0.34907, ... 'TemperatureScaleFactor',0.02, ... 'AccelerationBias',0.00017809, ... 'ConstantBias',[0.3491,0.5,0]); orientationDefault = zeros(numSamples,1,'quaternion'); for i = 1:numSamples [accelBody,gyroBody] = IMU(accNED(i,:),angVelNED(i,:),orientationNED(i,:)); orientationDefault(i) = aFilter(accelBody,gyroBody); end release(aFilter) figure(2) plot(t,eulerd(orientationDefault,'ZYX','frame')) xlabel('Time (s)') ylabel('Rotation (degrees)') title('Orientation Estimation -- Realistic IMU Data, Default IMU Filter') legend('Z-axis','Y-axis','X-axis')

The ability of the `imufilter`

to track the ground-truth data is significantly reduced when modeling a realistic IMU. To improve performance, modify properties of your `imufilter`

object. These values were determined empirically. Run the loop again and plot the orientation estimate over time.

aFilter.GyroscopeNoise = 7.6154e-7; aFilter.AccelerometerNoise = 0.0015398; aFilter.GyroscopeDriftNoise = 3.0462e-12; aFilter.LinearAccelerationNoise = 0.00096236; aFilter.InitialProcessNoise = aFilter.InitialProcessNoise*10; orientationNondefault = zeros(numSamples,1,'quaternion'); for i = 1:numSamples [accelBody,gyroBody] = IMU(accNED(i,:),angVelNED(i,:),orientationNED(i,:)); orientationNondefault(i) = aFilter(accelBody,gyroBody); end release(aFilter) figure(3) plot(t,eulerd(orientationNondefault,'ZYX','frame')) xlabel('Time (s)') ylabel('Rotation (degrees)') title('Orientation Estimation -- Realistic IMU Data, Nondefault IMU Filter') legend('Z-axis','Y-axis','X-axis')

To quantify the improved performance of the modified `imufilter`

, plot the quaternion distance between the ground-truth motion and the orientation as returned by the `imufilter`

with default and nondefault properties.

qDistDefault = rad2deg(dist(orientationNED,orientationDefault)); qDistNondefault = rad2deg(dist(orientationNED,orientationNondefault)); figure(4) plot(t,[qDistDefault,qDistNondefault]) title('Quaternion Distance from True Orientation') legend('Realistic IMU Data, Default IMU Filter', ... 'Realistic IMU Data, Nondefault IMU Filter') xlabel('Time (s)') ylabel('Quaternion Distance (degrees)')

This example shows how to remove gyroscope bias from an IMU using `imufilter`

.

Use `kinematicTrajectory`

to create a trajectory with two parts. The first part has a constant angular velocity about the *y*- and *z*-axes. The second part has a varying angular velocity in all three axes.

duration = 60*8; fs = 20; numSamples = duration * fs; rng('default') % Seed the RNG to reproduce noisy sensor measurements. initialAngVel = [0,0.5,0.25]; finalAngVel = [-0.2,0.6,0.5]; constantAngVel = repmat(initialAngVel,floor(numSamples/2),1); varyingAngVel = [linspace(initialAngVel(1), finalAngVel(1), ceil(numSamples/2)).', ... linspace(initialAngVel(2), finalAngVel(2), ceil(numSamples/2)).', ... linspace(initialAngVel(3), finalAngVel(3), ceil(numSamples/2)).']; angVelBody = [constantAngVel; varyingAngVel]; accBody = zeros(numSamples,3); traj = kinematicTrajectory('SampleRate',fs); [~,qNED,~,accNED,angVelNED] = traj(accBody,angVelBody);

Create an `imuSensor`

System object™, `IMU`

, with a nonideal gyroscope. Call `IMU`

with the ground-truth acceleration, angular velocity, and orientation.

IMU = imuSensor('accel-gyro', ... 'Gyroscope',gyroparams('RandomWalk',0.003,'ConstantBias',0.3), ... 'SampleRate',fs); [accelReadings, gyroReadingsBody] = IMU(accNED,angVelNED,qNED);

Create an `imufilter`

System object, `fuse`

. Call `fuse`

with the modeled accelerometer readings and gyroscope readings.

fuse = imufilter('SampleRate',fs, 'GyroscopeDriftNoise', 1e-6); [~,angVelBodyRecovered] = fuse(accelReadings,gyroReadingsBody);

Plot the ground-truth angular velocity, the gyroscope readings, and the recovered angular velocity for each axis.

The angular velocity returned from the `imufilter`

compensates for the effect of the gyroscope bias over time and converges to the true angular velocity.

time = (0:numSamples-1)'/fs; figure(1) plot(time,angVelBody(:,1), ... time,gyroReadingsBody(:,1), ... time,angVelBodyRecovered(:,1)) title('X-axis') legend('True Angular Velocity', ... 'Gyroscope Readings', ... 'Recovered Angular Velocity') ylabel('Angular Velocity (rad/s)')

figure(2) plot(time,angVelBody(:,2), ... time,gyroReadingsBody(:,2), ... time,angVelBodyRecovered(:,2)) title('Y-axis') ylabel('Angular Velocity (rad/s)')

figure(3) plot(time,angVelBody(:,3), ... time,gyroReadingsBody(:,3), ... time,angVelBodyRecovered(:,3)) title('Z-axis') ylabel('Angular Velocity (rad/s)') xlabel('Time (s)')

*Note: The following algorithm only applies to an NED reference
frame.*

The `imufilter`

uses the six-axis Kalman filter structure described in [1]. The algorithm attempts to
track the errors in orientation, gyroscope offset, and linear acceleration to output the final
orientation and angular velocity. Instead of tracking the orientation directly, the indirect
Kalman filter models the error process, *x*, with a recursive update:

$${x}_{k}=\left[\begin{array}{c}{\theta}_{k}\\ {b}_{k}\\ {a}_{k}\end{array}\right]={F}_{k}\left[\begin{array}{c}{\theta}_{k-1}\\ {b}_{k-1}\\ {a}_{k-1}\end{array}\right]+{w}_{k}$$

where *x _{k}* is a 9-by-1 vector consisting of:

*θ*–– 3-by-1 orientation error vector, in degrees, at time_{k}*k**b*–– 3-by-1 gyroscope zero angular rate bias vector, in deg/s, at time_{k}*k**a*–– 3-by-1 acceleration error vector measured in the sensor frame, in g, at time_{k}*k**w*–– 9-by-1 additive noise vector_{k}*F*–– state transition model_{k}

Because *x*_{k} is defined as the error process, the
*a priori* estimate is always zero, and therefore the state transition
model, *F*_{k}, is zero. This insight results in the
following reduction of the standard Kalman equations:

Standard Kalman equations:

$$\begin{array}{l}{x}_{k}^{-}={F}_{k}{x}_{k-1}^{+}\\ {P}_{k}{}^{-}={F}_{k}{P}_{k-1}^{+}{F}_{k}^{T}+{Q}_{k}\\ \\ {y}_{k}={z}_{k}-{H}_{k}{x}_{k}^{-}\\ {S}_{k}\text{\hspace{0.17em}}={R}_{k}+{H}_{k}{P}_{k}^{-}{H}_{k}{}^{T}\\ {K}_{k}={P}_{k}^{-}{H}_{k}^{T}{\left({S}_{k}\right)}^{-1}\\ {x}_{k}^{+}={x}_{k}^{-}+{K}_{k}{y}_{k}\\ {P}_{k}^{+}={P}_{k}{}^{-}-{K}_{k}{H}_{k}{P}_{k}{}^{-}\end{array}$$

Kalman equations used in this algorithm:

$$\begin{array}{l}{x}_{k}^{-}=0\\ {P}_{k}{}^{-}={Q}_{k}\\ \\ {y}_{k}={z}_{k}\\ {S}_{k}\text{\hspace{0.17em}}={R}_{k}+{H}_{k}{P}_{k}^{-}{H}_{k}{}^{T}\\ {K}_{k}={P}_{k}^{-}{H}_{k}^{T}{\left({S}_{k}\right)}^{-1}\\ {x}_{k}^{+}={K}_{k}{y}_{k}\\ {P}_{k}^{+}={P}_{k}{}^{-}-{K}_{k}{H}_{k}{P}_{k}{}^{-}\end{array}$$

where

*x*_{k}^{−}–– predicted (*a priori*) state estimate; the error process*P*_{k}^{−}–– predicted (*a priori*) estimate covariance*y*–– innovation_{k}*S*–– innovation covariance_{k}*K*–– Kalman gain_{k}*x*_{k}^{+}–– updated (*a posteriori*) state estimate*P*_{k}^{+}–– updated (*a posteriori*) estimate covariance

*k* represents the iteration, the superscript
^{+} represents an *a posteriori* estimate, and
the superscript ^{−} represents an *a priori*
estimate.

The graphic and following steps describe a single frame-based iteration through the algorithm.

Before the first iteration, the `accelReadings`

and
`gyroReadings`

inputs are chunked into 1-by-3 frames and
`DecimationFactor`

-by-3 frames, respectively. The algorithm uses the most
current accelerometer readings corresponding to the chunk of gyroscope readings.

Step through the algorithm for an explanation of each stage of the detailed overview.

The algorithm models acceleration and angular change as linear processes.

The orientation for the current frame is predicted by first estimating the angular change from the previous frame:

$$\Delta {\phi}_{N\times 3}=\frac{\left(gyroReading{s}_{N\times 3}-gyroOffse{t}_{1\times 3}\right)}{fs}$$

where *N* is the decimation factor specified by the
`DecimationFactor`

property, and *fs* is the sample
rate specified by the `SampleRate`

property.

The angular change is converted into quaternions using the `rotvec`

`quaternion`

construction syntax:

$$\Delta {Q}_{N\times 1}=\mathrm{quaternion}(\Delta {\phi}_{N\times 3},\text{'}rotvec\text{'})$$

The previous orientation estimate is updated by rotating it by Δ*Q*:

$${q}_{1\times 1}^{-}=\left({q}_{1\times 1}^{+}\right)\left({\displaystyle \prod _{n=1}^{N}\Delta {Q}_{n}}\right)$$

During the first iteration, the orientation estimate,
*q*^{−}, is initialized by `ecompass`

with
an assumption that the *x*-axis points north.

The gravity vector is interpreted as the third column of the quaternion,
*q*^{−}, in rotation matrix form:

$${g}_{1\times 3}={\left(rPrior(:,3)\right)}^{T}$$

See `ecompass`

for an explanation of
why the third column of *rPrior* can be interpreted as the gravity
vector.

A second gravity vector estimation is made by subtracting the decayed linear acceleration estimate of the previous iteration from the accelerometer readings:

$$gAcce{l}_{1\times 3}=accelReading{s}_{1\times 3}-linAccelprio{r}_{1\times 3}$$

The error model is the difference between the gravity estimate from the accelerometer readings and the gravity estimate from the gyroscope readings: $$z=g-gAccel$$.

The Kalman equations use the gravity estimate derived from the gyroscope readings,
*g*, and the observation of the error process, *z*, to
update the Kalman gain and intermediary covariance matrices. The Kalman gain is applied to
the error signal, *z*, to output an *a posteriori* error
estimate, *x*^{+}.

The observation model maps the 1-by-3 observed state, *g*, into the
3-by-9 true state, *H*.

The observation model is constructed as:

$${H}_{3\times 9}=\left[\begin{array}{ccccccccc}0& {g}_{z}& -{g}_{y}& 0& -\kappa {g}_{z}& \kappa {g}_{y}& 1& 0& 0\\ -{g}_{z}& 0& {g}_{x}& \kappa {g}_{z}& 0& -\kappa {g}_{x}& 0& 1& 0\\ {g}_{y}& -{g}_{x}& 0& -\kappa {g}_{y}& \kappa {g}_{x}& 0& 0& 0& 1\end{array}\right]$$

where *g _{x}*,

`DecimationFactor`

/`SampleRate`

.See sections 7.3 and 7.4 of [1] for a derivation of the observation model.

The innovation covariance is a 3-by-3 matrix used to track the variability in the measurements. The innovation covariance matrix is calculated as:

$${S}_{3x3}={R}_{3x3}+\left({H}_{3x9}\right)\left({P}_{{}_{9x9}}^{-}\right){\left({H}_{3x9}\right)}^{T}$$

where

*H*is the observation model matrix*P*^{−}is the predicted (*a priori*) estimate of the covariance of the observation model calculated in the previous iteration*R*is the covariance of the observation model noise, calculated as:$${R}_{3\times 3}=\left(\lambda \text{\hspace{0.17em}}\text{+}\text{\hspace{0.17em}}\xi \text{\hspace{0.17em}}\text{+}\text{\hspace{0.17em}}\kappa \left(\beta \text{\hspace{0.17em}}\text{+}\text{\hspace{0.17em}}\eta \right)\right)\left[\begin{array}{ccc}1& 0& 0\\ 0& 1& 0\\ 0& 0& 1\end{array}\right].$$

The following properties define the observation model noise variance:

*κ*–– (DecimationFactor/SampleRate)^{2}*β*–– GyroscopeDriftNoise*η*–– GyroscopeNoise*λ*–– AccelerometerNoise

The error estimate covariance is a 9-by-9 matrix used to track the variability in the state.

The error estimate covariance matrix is updated as:

$${P}_{{}_{9\times 9}}^{+}={P}_{{}_{9\times 9}}^{-}-\left({K}_{9\times 3}\right)\left({H}_{3\times 9}\right)\left({P}_{{}_{9\times 9}}^{-}\right)$$

where *K* is the Kalman gain, *H* is
the measurement matrix, and *P*^{−} is the error
estimate covariance calculated during the previous iteration.

The error estimate covariance is a 9-by-9 matrix used to track the variability in the
state. The *a priori* error estimate covariance,
*P ^{−}*, is set to the process noise
covariance,

$$Q=\left[\begin{array}{ccccccccc}{P}^{+}(1)+{\kappa}^{2}{P}^{+}(31)+\beta +\eta & 0& 0& -\kappa \left({P}^{+}(31)+\beta \right)& 0& 0& 0& 0& 0\\ 0& {P}^{+}(11)+{\kappa}^{2}{P}^{+}(41)+\beta +\eta & 0& 0& -\kappa ({P}^{+}(41)+\beta )& 0& 0& 0& 0\\ 0& 0& {P}^{+}(21)+{\kappa}^{2}{P}^{+}(51)+\beta +\eta & 0& 0& -\kappa ({P}^{+}(51)+\beta )& 0& 0& 0\\ -\kappa \left({P}^{+}(31)+\beta \right)& 0& 0& {P}^{+}(31)+\beta & 0& 0& 0& 0& 0\\ 0& -\kappa ({P}^{+}(41)+\beta )& 0& 0& {P}^{+}(41)+\beta & 0& 0& 0& 0\\ 0& 0& -\kappa ({P}^{+}(51)+\beta )& 0& 0& {P}^{+}(51)+\beta & 0& 0& 0\\ 0& 0& 0& 0& 0& 0& {\nu}^{2}{P}^{+}(61)+\xi & 0& 0\\ 0& 0& 0& 0& 0& 0& 0& {\nu}^{2}{P}^{+}(71)+\xi & 0\\ 0& 0& 0& 0& 0& 0& 0& 0& {\nu}^{2}{P}^{+}(81)+\xi \end{array}\right]$$

where

*P*^{+}–– is the updated (*a posteriori*) error estimate covariance*β*–– GyroscopeDriftNoise*η*–– GyroscopeNoise

See section 10.1 of [1] for a derivation of the terms of the process error matrix.

The Kalman gain matrix is a 9-by-3 matrix used to weight the innovation. In this
algorithm, the innovation is interpreted as the error process,
*z*.

The Kalman gain matrix is constructed as:

$${K}_{9\times 3}=\left({P}_{{}_{9\times 9}}^{-}\right){\left({H}_{3\times 9}\right)}^{T}{\left({\left({S}_{3\times 3}\right)}^{T}\right)}^{-1}$$

where

*P*^{-}–– predicted error covariance*H*–– observation model*S*–– innovation covariance

The *a posterior* error estimate is determined by combining the
Kalman gain matrix with the error in the gravity vector estimations:

$${x}_{9\times 1}=\left({K}_{9\times 3}\right){({z}_{1\times 3})}^{T}$$

The orientation estimate is updated by multiplying the previous estimation by the error:

$${q}^{+}=\left({q}^{-}\right)\left({\theta}^{+}\right)$$

The linear acceleration estimation is updated by decaying the linear acceleration estimation from the previous iteration and subtracting the error:

$$linAccelPrior=(linAccelPrio{r}_{k-1})\nu -{b}^{+}$$

where

The gyroscope offset estimation is updated by subtracting the gyroscope offset error from the gyroscope offset from the previous iteration:

$$gyroOffset=gyroOffse{t}_{k-1}-{a}^{+}$$

To estimate angular velocity, the frame of `gyroReadings`

are
averaged and the gyroscope offset computed in the previous iteration is subtracted:

$$angularVelocit{y}_{1\times 3}=\frac{{\displaystyle \sum gyroReading{s}_{N\times 3}}}{N}-gyroOffse{t}_{1\times 3}$$

where *N* is the decimation factor specified by the
`DecimationFactor`

property.

The gyroscope offset estimation is initialized to zeros for the first iteration.

[1] Open Source Sensor Fusion. https://github.com/memsindustrygroup/Open-Source-Sensor-Fusion/tree/master/docs

[2] Roetenberg, D., H.J. Luinge, C.T.M. Baten,
and P.H. Veltink. "Compensation of Magnetic Disturbances Improves Inertial and Magnetic
Sensing of Human Body Segment Orientation." *IEEE Transactions on Neural Systems and
Rehabilitation Engineering*. Vol. 13. Issue 3, 2005, pp. 395-405.

Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See System Objects in MATLAB Code Generation (MATLAB Coder).

`ecompass`

| `ahrsfilter`

| `imuSensor`

| `gpsSensor`

| `quaternion`

You have a modified version of this example. Do you want to open this example with your edits?

You clicked a link that corresponds to this MATLAB command:

Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.

Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .

Select web siteYou can also select a web site from the following list:

Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.

- América Latina (Español)
- Canada (English)
- United States (English)

- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)

- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)