acosh
Symbolic inverse hyperbolic cosine function
Syntax
Description
Examples
Inverse Hyperbolic Cosine Function for Numeric and Symbolic Arguments
Depending on its arguments, acosh returns
floating-point or exact symbolic results.
Compute the inverse hyperbolic cosine function for these numbers. Because these numbers
are not symbolic objects, acosh returns floating-point results.
A = acosh([-1, 0, 1/6, 1/2, 1, 2])
A = 0.0000 + 3.1416i 0.0000 + 1.5708i 0.0000 + 1.4033i... 0.0000 + 1.0472i 0.0000 + 0.0000i 1.3170 + 0.0000i
Compute the inverse hyperbolic cosine function for the numbers converted to symbolic
objects. For many symbolic (exact) numbers, acosh returns unresolved
symbolic calls.
symA = acosh(sym([-1, 0, 1/6, 1/2, 1, 2]))
symA = [ pi*1i, (pi*1i)/2, acosh(1/6), (pi*1i)/3, 0, acosh(2)]
Use vpa to approximate symbolic results with floating-point
numbers:
vpa(symA)
ans = [ 3.1415926535897932384626433832795i,... 1.5707963267948966192313216916398i,... 1.4033482475752072886780470855961i,... 1.0471975511965977461542144610932i,... 0,... 1.316957896924816708625046347308]
Plot Inverse Hyperbolic Cosine Function
Plot the inverse hyperbolic cosine function on the interval from 1 to 10.
syms x fplot(acosh(x),[1 10]) grid on

Handle Expressions Containing Inverse Hyperbolic Cosine Function
Many functions, such as diff,
int, taylor, and rewrite,
can handle expressions containing acosh.
Find the first and second derivatives of the inverse hyperbolic cosine function.
Simplify the second derivative by using simplify.
syms x diff(acosh(x), x) simplify(diff(acosh(x), x, x))
ans = 1/((x - 1)^(1/2)*(x + 1)^(1/2)) ans = -x/((x - 1)^(3/2)*(x + 1)^(3/2))
Find the indefinite integral of the inverse hyperbolic cosine function. Simplify the
result by using simplify.
int(acosh(x), x)
ans = x*acosh(x) - (x - 1)^(1/2)*(x + 1)^(1/2)
Find the Taylor series expansion of acosh(x) for x >
1:
assume(x > 1) taylor(acosh(x), x)
ans = (x^5*3i)/40 + (x^3*1i)/6 + x*1i - (pi*1i)/2
For further computations, clear the assumption on x by recreating it
using syms:
syms x
Rewrite the inverse hyperbolic cosine function in terms of the natural logarithm:
rewrite(acosh(x), 'log')
ans = log(x + (x - 1)^(1/2)*(x + 1)^(1/2))
Input Arguments
Version History
Introduced before R2006a