Why fminunc does not find the true global minimum?
3 views (last 30 days)
Show older comments
Hi all, I should solve this unconstrained optimization problem (attached). I know that the function has the global minimum at [1 2 2 3]. However, if I set as starting value [1 2 2 3], the algorithm ends up at [1.1667 2.4221 2.2561 3]. I have some doubts to clarify (I'm not familiar with this topic, sorry for my trivial questions):
1) The algorithm output reveals that at iteration 0 the function takes value 5.47709e-06 and at iteration 10 the function takes value 1.41453e-06. But, if I compute the function value at [1 2 2 3] I get 1.4140e-06 and if I compute the function value at [1.1667 2.4221 2.2561 3] I get 1.5635e-06. Why are these values different from the starting and final function values reported in the algorithm output?
2) How can I force the algorithm to keep searching until it arrives at [1 2 2 3]?
Thanks!
0 Comments
Accepted Answer
Matt J
on 3 Feb 2014
When you call fminunc with all 5 outputs
[x,fval,exitflag,output,grad,hessian]= fminunc(...)
what are the values of these outputs?
In particular, if the true Hessian is singular at the global min [1 2 2 3], I can imagine its finite difference estimate, as computed by fminunc, could be numerically problematic, e.g., not positive definite.
7 Comments
Matt J
on 3 Feb 2014
Edited: Matt J
on 3 Feb 2014
my problem cannot be reparameterize in the way you suggest.
Forget it. Nevertheless, your code can be cleaner and more efficient. Below is my idea of what it should look like. Notice that there is alot that you can pre-compute in the interests of speed. Notice also the more modern way of passing fixed data and parameters to functions.
thetatrue=[1 2 2 3];
mu = [0 0];
sd = [1 0.3; 0.3 1];
A1(:,2)=-ix(:,1); A1(:,1)=-1;
A2(:,2)=-ix(:,2); A2(:,1)=-1;
cdfun=@(x) mvncdf( [A1*[x(1);x(3)], A2*[x(2);x(4)] ],mu,sd);
W1=cdfun(thetatrue);
W2=1-W1;
options=optimset('Display','iter','MaxIter',10000,'TolX',10^-30,'TolFun',10^-30);
theta0=[1 2 2 3]; %Starting values
[theta,fval,exitflag,output]=...
fminunc(@(x) log_lik(x, cdfun,W1,W2),theta0,options);
function val=log_lik(theta,cdfun,W1,W2)
z=cdfun(theta);
val=-sum(W1.*log(z)+W2.*log(1-z));
More Answers (1)
Alan Weiss
on 3 Feb 2014
I did not look at your data. But I doubt that the true global minimum is at [1 2 2 3] if you are really fitting to data. I would bet that you generated data from a known distribution, and then fit the model to that data. You will never get perfect match to the initial distribution, because the data that you used is not perfectly distributed according to the theoretical distribution.
For instance, this toolbox example shows theoretical parameters of [1 3 2], and yet the fitted model has parameters [1.0169 3.1444 2.1596], and the fitted model is at a global minimum for that data set.
Alan Weiss
MATLAB mathematical toolbox documentation
See Also
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!