Calculate the difference between minimum values of a parabola and straight line (from a plot)

4 views (last 30 days)
Hello everyone, please could you help me with a code.
How I can calculate the values from a plot? I need the difference between straight line (P) and between the minimum value of a parabola (P) for each curve.
So, for example in this curve, the difference between the straight blue curve and the first parabola, then the next straight line and green parabola and so on.
My code is:
clear all; close all
W = 60000;
S = 28.2;
AR=7;
cd0 = 0.02;
k = 0.04;
RC=0.51;
clalpha = 2*pi;
Psl=741000;
hv=0:1:10;
cdminp=4*cd0;
clminp=sqrt(3*cd0/k);
Vmin=sqrt(2*W/(1.225*28.2*clminp));
D=0.5*1.225*Vmin^2*S*cdminp;
Pminreq=D*Vmin;
deltaPgiven=RC*W;
figure(1);hold on; xlabel('V');ylabel('P')
hv=0:1:10;
for k1 = 1:numel(hv)
h = hv(k1);
i=0;
for alpha = 1:0.25:15
i=i+1;
rho(i)=1.225*exp(-h/10.4);
cl(i) = clalpha * alpha * pi/180;
V(i) = sqrt(2*W/rho(i)/S/cl(i));
L(i) = 0.5 * rho(i) * V(i) * V(i) * S * cl(i);
cd(i) = cd0 + k * cl(i) * cl(i);
D(i) = 0.5 * rho(i) * V(i) * V(i) * S * cd(i);
clcd(i) = cl(i)/cd(i);
p(i) = D(i)*V(i);
Ph(i)=Psl*(rho(i)/1.225).^0.75;
end
figure(1); plot(V,p)
hold on
plot(V,Ph);
end

Accepted Answer

Les Beckham
Les Beckham on 10 Feb 2023
Edited: Les Beckham on 10 Feb 2023
Maybe this?
W = 60000;
S = 28.2;
AR=7;
cd0 = 0.02;
k = 0.04;
RC=0.51;
clalpha = 2*pi;
Psl=741000;
hv=0:1:10;
cdminp=4*cd0;
clminp=sqrt(3*cd0/k);
Vmin=sqrt(2*W/(1.225*28.2*clminp));
D=0.5*1.225*Vmin^2*S*cdminp;
Pminreq=D*Vmin;
deltaPgiven=RC*W;
figure(1);hold on; xlabel('V');ylabel('P')
hv=0:1:10;
for k1 = 1:numel(hv)
h = hv(k1);
i=0;
for alpha = 1:0.25:15
i=i+1;
rho(i)=1.225*exp(-h/10.4);
cl(i) = clalpha * alpha * pi/180;
V(i) = sqrt(2*W/rho(i)/S/cl(i));
L(i) = 0.5 * rho(i) * V(i) * V(i) * S * cl(i);
cd(i) = cd0 + k * cl(i) * cl(i);
D(i) = 0.5 * rho(i) * V(i) * V(i) * S * cd(i);
clcd(i) = cl(i)/cd(i);
p(i) = D(i)*V(i);
Ph(i)=Psl*(rho(i)/1.225).^0.75;
end
figure(1); plot(V,p)
hold on
plot(V,Ph);
[pmin, imin] = min(p); % find the min p
deltas(k1) = Ph(1) - pmin; % calculate the difference
tolerance = 5000; % or whatever you want
if (abs(deltas(k1) - 300000) < tolerance)
fprintf('delta = %8.1f at h = %4.1f, rho = %.5f, V = %.2f, Ph = %.1f, p = %.1f\n', ...
deltas(k1), h, rho(imin), V(imin), Ph(imin), p(imin))
end
end
delta = 302330.3 at h = 4.0, rho = 0.83387, V = 64.31, Ph = 555317.0, p = 252986.7
legend(compose('h = %.1f', hv), 'location', 'northwest')
grid on
  8 Comments
Les Beckham
Les Beckham on 10 Feb 2023
It just represents how close to 300000 the delta has to be to make the code print the results. Adjust as desired.

Sign in to comment.

More Answers (1)

Torsten
Torsten on 10 Feb 2023
Edited: Torsten on 10 Feb 2023
syms h V W S rho cd0 k cl Psl
eqn = V == sqrt(2*W/rho/S/cl);
cl = solve(eqn,cl);
Warning: Solutions are only valid under certain conditions. To include parameters and conditions in the solution, specify the 'ReturnConditions' value as 'true'.
cd = cd0 + k * cl^2;
D = 0.5 * rho * V * V * S * cd;
p = D*V;
Vmin = solve(diff(p,V)==0,V);
pmin = subs(p,V,Vmin);
Ph = Psl*(rho/1.225)^0.75;
hnum = 0:0.01:10;
Wnum = 60000;
Snum = 28.2;
rhonum = 1.225*exp(-hnum/10.4);
cd0num = 0.02;
knum = 0.04;
Pslnum = 741000;
for i = 1:numel(hnum)
Phnum(i) = double(subs(Ph,[rho Psl],[rhonum(i),Pslnum]));
pm = double(subs(pmin,[W S rho cd0 k],[Wnum Snum rhonum(i) cd0num,knum]));
pminnum(i) = pm(end);
deltaP(i) = Phnum(i)-pminnum(i);
end
format long
deltaP.'
ans = 1001×1
1.0e+05 * 5.322767552311991 5.316422010284389 5.310079836471793 5.303741027866013 5.297405581460750 5.291073494251587 5.284744763235998 5.278419385413340 5.272097357784856 5.265778677353669
idx = deltaP > 2.8e5 & deltaP < 3.2e5; % select those deltaP with 2.8e5 <= deltaP < = 3.2e5
[hnum(idx).' deltaP(idx).'] % Show these values together with the corresponding h values
ans = 77×2
1.0e+05 * 0.000036700000000 3.196913122178178 0.000036800000000 3.191616062324753 0.000036900000000 3.186321382077705 0.000037000000000 3.181029079029593 0.000037100000000 3.175739150774377 0.000037200000000 3.170451594907418 0.000037300000000 3.165166409025479 0.000037400000000 3.159883590726722 0.000037500000000 3.154603137610705 0.000037600000000 3.149325047278384
  2 Comments
Alina Abdikadyr
Alina Abdikadyr on 10 Feb 2023
Thank you very much! But If I will have more h values, so may I display the deltaP values that are almost equal to 3?
Torsten
Torsten on 10 Feb 2023
Edited: Torsten on 10 Feb 2023
Add the lines
idx = deltaP > 2.8e5 & deltaP < 3.2e5; % select those deltaP with 2.8e5 <= deltaP < = 3.2e5
[hnum(idx) deltaP(idx)] % Show these values together with the corresponding h values
at the end of the code.

Sign in to comment.

Categories

Find more on Particle & Nuclear Physics in Help Center and File Exchange

Products


Release

R2022b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!