Generalized equation using multiple equation
1 view (last 30 days)
Show older comments
x = [0.25 0.50 0.75 1 1.25 1.50 1.75 2 2.25 2..50 2.75 3]
y1 = [0.001524 0.00605 0.013592 0.024151 0.037728 0.054321 0.073921 0.096514 0.122102 0.150689 0.182278 0.21687]
y2 = [0.060598 0.14902 0.28793 0.42474 0.57648 0.78663 1.0389 1.6032 2.3667 3.1328 3.8971 4.6297]
y3 = [0.016373 0.0503 0.1896 0.60113 1.2101 1.8134 2.9318 4.0203 4.8728 6.1467 8.1357 10.277]
y4 = [0.11668 0.33853 0.66617 1.2037 1.6292 2.4379 3.6119 4.8274 6.0769 6.4846 8.064 9.6733]
y5 = [0.131518 0.418614 0.793038 1.33235 1.94051 2.54087 4.31947 5.25463 6.33347 7.82779 9.91558 12.4864]
Could someone provide guidance on how to derive a single equation that applies to all five curves, each of which includes a dimensionless parameter "z"? The goal is to have a generalized equation that can be used to obtain the corresponding values for all five cases by simply plugging in different values of "z" (e.g., 0, 0.5, 1, 2, and 2.5).
[Hint: When Z = 0 I will get black curve; When Z = 0.5 I will get blue curve; When Z = 1 I will get red curve; When Z = 2 I will get green curve; When Z = 2.5 I will get magenta curve] (I have also attached an image which also contains separate equations for all five curves in it)
0 Comments
Accepted Answer
Matt J
on 1 May 2023
Edited: Matt J
on 1 May 2023
xdata = [0.25 0.50 0.75 1 1.25 1.50 1.75 2 2.25 2.50 2.75 3];
y1 = [0.001524 0.00605 0.013592 0.024151 0.037728 0.054321 0.073921 0.096514 0.122102 0.150689 0.182278 0.21687];
y2 = [0.060598 0.14902 0.28793 0.42474 0.57648 0.78663 1.0389 1.6032 2.3667 3.1328 3.8971 4.6297];
y3 = [0.016373 0.0503 0.1896 0.60113 1.2101 1.8134 2.9318 4.0203 4.8728 6.1467 8.1357 10.277] ;
y4 = [0.11668 0.33853 0.66617 1.2037 1.6292 2.4379 3.6119 4.8274 6.0769 6.4846 8.064 9.6733] ;
y5 = [0.131518 0.418614 0.793038 1.33235 1.94051 2.54087 4.31947 5.25463 6.33347 7.82779 9.91558 12.4864];
ydata=[y1;y2;y3;y4;y5];
[x,fval]=lsqcurvefit(@F,ones(5,2),xdata,ydata,zeros(5,2))
plot(xdata,ydata','x',xdata,F(x,xdata))
function out=F(x,xdata)
out=x(:,1).*exp( x(:,2).*xdata);
end
15 Comments
More Answers (1)
Matt J
on 2 May 2023
Edited: Matt J
on 2 May 2023
[Hint: When Z = 0 I will get black curve; When Z = 0.5 I will get blue curve; When Z = 1 I will get red curve; When Z = 2 I will get green curve; When Z = 2.5 I will get magenta curve] (I have also attached an image which also contains separate equations for all five curves in it)
Here is one choice which fulfills this, but as I mentioned earlier, it is only one choice of infinitely many:
z=[0,0.5,1,2,2.5];
a=[0.051512, 0.32887, 0.67073, 1.1425, 1.1132];
b=[0.96062, 1.1142,1.1155,0.91651,0.99419];
pa=polyfit(z,a,4);
pb=polyfit(z,b,4);
f=@(z,v) polyval(pa,z).*exp(polyval(pb,z).*v); %joint function of z and v
%Visual check
for z0=[0,0.5,1,2,2.5]
fplot(@(v)f(z0,v)); hold on
end
hold off, xlim([0,3])
0 Comments
See Also
Categories
Find more on Linear and Nonlinear Regression in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!