Fit ellipsoid to (x,y,z) data

15 views (last 30 days)
Geetartha Dutta
Geetartha Dutta on 25 Oct 2023
Commented: Geetartha Dutta on 1 Nov 2023
I have a 3D dataset having (x,y,z) coordinates. The x and y values are equally spaced (regular grid). How can I fit an ellipsoid of the form (x-p)^2/a^2 + (y-q)^2/b^2 + (z-r)^2/c^2 , where (p,q,r) are the coordinates of the center of the ellipsoid, and a,b,c are the radii?
  7 Comments
Matt J
Matt J on 26 Oct 2023
Edited: Matt J on 26 Oct 2023
I know that there seems to be two modes in the data
Looks like a lot more than that. I can't tell which is supposed to be the "greater" mode. In any case, if you want a good fit in a particular region, you will have to prune the data to exclude the other regions.
Geetartha Dutta
Geetartha Dutta on 26 Oct 2023
Attached is the pruned data. It would be great if I could get a reasonably good fit to this data.

Sign in to comment.

Accepted Answer

Matt J
Matt J on 26 Oct 2023
Edited: Matt J on 26 Oct 2023
I'm finding that a decent fitting strategy is to first fit with a Gaussian, but then use the parameters of the Gaussian to construct an ellipsoid hemisphere. For the Gaussian fitting, I used gaussfitn, which is downloadable from,
load xyz
[maxval,i]=max(z(:));
mu0=[x(i);y(i)];
D0=min(z(:));
opts={'FunctionTolerance',1e-14, 'OptimalityTolerance',1e-14, 'StepTolerance',1e-14};
G0={D0,maxval-D0,mu0,100*eye(2)};
LB={0,0,[],[]};
UB={D0,maxval,[],[]};
G = gaussfitn([x(:),y(:)],z(:),G0,LB,UB,opts{:});
Local minimum possible. lsqcurvefit stopped because the final change in the sum of squares relative to its initial value is less than the value of the function tolerance.
%Disaply surfaces
[Zg,Ze]=getSurf(x,y,G);
surf(x,y,z,'FaceAlpha',0.5,'FaceColor','b');
surface(x,y,Ze,'FaceColor','r'); xlabel X, ylabel Y
legend('Raw Data','Fit')
function [Zg,Ze]=getSurf(x,y,G)
[D,A,mu,sig]=deal(G{:});
sz=size(x);
xy=[x(:),y(:)]'-mu;
Zg=D+A*exp(-0.5*sum( (sig\xy).*xy,1)); Zg=reshape(Zg,sz); %Gaussian Fit
Ze=D+A*sqrt(1-sum( (sig\xy).*xy)); Ze=reshape(Ze,sz); %Ellipsoid Fit
end
  6 Comments
Matt J
Matt J on 31 Oct 2023
Edited: Matt J on 31 Oct 2023
You should set the complex values to NaN. They correspond to (x,y) outside the footprint of the ellipsoid.

Sign in to comment.

More Answers (2)

Torsten
Torsten on 25 Oct 2023

Matt J
Matt J on 26 Oct 2023
Edited: Matt J on 26 Oct 2023
Using quadricFit from,
%%%%%%%%%%%Fake input data
[X,Y,Z] = sphere;
[X,Y,Z]=deal(1+40*X, 2+20*Y,3+30*Z); %stretch into an ellipsoid
surf(X,Y,Z); axis equal
%%%%%%%%%%% Do the fit
XYZ=[X(:),Y(:),Z(:)]';
[XYZ,T]=quadricFit.homogNorm(XYZ);
X=XYZ(1,:).';
Y=XYZ(2,:).';
Z=XYZ(3,:).';
e=+ones(size(X,1),1);
M= [X.^2, [], [], X, ...
Y.^2, [], Y, ...
Z.^2 Z, ...
e];
coeffs=quadricFit.mostnull(M);
ABCDEFGHIJ=zeros(1,10);
ABCDEFGHIJ([1,4,5,7:10])=coeffs;
ABCDEFGHIJ=num2cell(ABCDEFGHIJ);
[A,B,C,D,E,F,G,H,I,J]=deal(ABCDEFGHIJ{:});
Q=[A, B, C; %D
0 E, F; %G
0 0 H];%I
%J
Q=Q/2+Q.'/2;
W=T.'*[Q,[D;G;I]/2;[D,G,I]/2,J]*T;
Q=W(1:3,1:3);
x0=-Q\W(1:3,end);
T=eye(4); T(1:3,4)=x0;
W=T.'*W*T; W=-W/W(end);
rad=sqrt(1./diag(W(1:3,1:3)));
[a,b,c]=deal(rad(1),rad(2),rad(3)) %ellipsoid radii
a = 40.0000
b = 20
c = 30.0000
[p,q,r]=deal(x0(1),x0(2),x0(3)) %ellipsoid center coordinates
p = 1.0000
q = 2.0000
r = 3.0000
  2 Comments
Geetartha Dutta
Geetartha Dutta on 26 Oct 2023
I tried the above code using my data, and it gives complex values for a and b. I am not sure why.
Matt J
Matt J on 26 Oct 2023
Attach your xyz data in a .mat file, so it can be examined.

Sign in to comment.

Categories

Find more on Curve Fitting Toolbox in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!