Solving a quadratic optimization problem subjected to linear constraints
2 views (last 30 days)
Show older comments
I'm trying to recreate the code behind this picture. I have a function
where
. I need to solve the following quadratic optimization problem subject to linear constraint:
subject to: 

the input data are:
= [0, 0.25, 0.5, 1, 1.2, 1.8, 2];
= [2, 0.8, 0.5, 0.1, 1, 0.5, 1];
= [0, 0.25, 0.5, 1, 1.2, 1.8, 2]; And I need the following result: 

I tried to use the function fmincon but it gives me always the same value for lambda. Can you help me find the error or explain to me what kind of function I need to use instead?
clc;
clear;
close all;
x_i = [0, 0.25, 0.5, 1, 1.2, 1.8, 2];
f_i = [2, 0.8, 0.5, 0.1, 1, 0.5, 1];
ottimizzazione_quadratica(x_i,f_i);
function risultato = ottimizzazione_quadratica(x_i, f_i)
x0 = zeros(size(x_i));
A = [];
b = [];
Aeq = [];
beq = [];
lb = zeros(size(x_i)); % lambda_i >= 0
ub = [];
lambda_ottimale = fmincon(@(lambda) funzione_obiettivo(lambda, x_i, f_i), x0, A, b, Aeq, beq, lb, ub);
risultato = F(lambda_ottimale, x_i);
% Plot F(x) and points (xi, fi)
x_vals = linspace(min(x_i), max(x_i), 1000);
F_vals = arrayfun(@(x) F(lambda_ottimale, x), x_vals);
figure;
plot(x_i, f_i, 'ro', 'MarkerSize', 10, 'MarkerFaceColor', 'r'); % Punti dati
hold on;
plot(x_vals, F_vals, 'b-', 'LineWidth', 2); % Funzione F(x)
xlabel('x');
ylabel('F(x)');
grid on;
hold off;
end
function risultato = funzione_obiettivo(lambda, x_i, f_i)
risultato = norm(F(lambda, x_i) - f_i)^2;
end
% F(x)
function risultato = F(lambda, x_i)
risultato = sum(lambda .* phi(x_i));
end
% phi
function risultato = phi(x_i)
% max(0, 1 - norm(x - xi)^4)*(4*norm(x-xi)+1)
risultato = arrayfun(@(x) max(0, 1 - norm(x - x_i)^4)*(4*norm(x - x_i) + 1), x_i);
end
0 Comments
Accepted Answer
Matt J
on 28 Nov 2023
Edited: Matt J
on 28 Nov 2023
xi=[0, 0.25, 0.5, 1, 1.2, 1.8, 2]';
fi= [2, 0.8, 0.5, 0.1, 1, 0.5, 1]';
phi=@(r) max(0, 1 - r).^4.*(4*r + 1);
C=phi(abs(xi-xi'));
[lambda,fval]=lsqnonneg(C,fi)
More Answers (0)
See Also
Categories
Find more on Quadratic Programming and Cone Programming in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!