polynomial multiplication not accurate, using conv() vs symbolic
5 views (last 30 days)
Show older comments
I'm calculating the square of a polynomial inside a loop. It seems to me that, calculating it using conv() is resulting in large errors, compared to converting the polynomial to symbolic and do the calculation there.
Just out of curiosity, I tried to sym2poly the symbolic results back to polynomial, and the error appears again.
However, I can't using symbolic calculation in the loop, because it's too slow.
Any input on why this is happening and how to solve it properly? Thanks in advance.
figure
% the polynomial
D4_poly= 1.0e+06 * [ -0.000001003321333
0.000108002928093
-0.004647941272734
0.099959233380745
-1.074286120871490
4.615719487403345];
D4_fn = matlabFunction(poly2sym(D4_poly));
subplot(2,2,1);fplot(D4_fn,[19.999825010467916,23.158281544048581])
% using conv
SqD4_poly = conv(D4_poly',D4_poly');
SqD4_fn = matlabFunction(poly2sym(SqD4_poly));
subplot(2,2,2);fplot(SqD4_fn,[19.999825010467916,23.158281544048581])
% using poly2sym
temp = poly2sym(D4_poly);
SqD4_s_fn = matlabFunction(temp ^2);
subplot(2,2,3);fplot(SqD4_s_fn,[19.999825010467916,23.158281544048581])
% sym2poly
SqD4_poly_2 = sym2poly(temp ^2);
SqD4_3_fn = matlabFunction(poly2sym(SqD4_poly_2));
subplot(2,2,4);fplot(SqD4_3_fn,[19.999825010467916,23.158281544048581])
0 Comments
Accepted Answer
Matt J
on 31 May 2024
Edited: Matt J
on 31 May 2024
To avoid the numerical instabilities of high order polynomials, don't work with the coefficients of D4_poly^2. Just evaluate D4_poly at the desired x and square the result:
D4_poly= 1.0e+06 * [ -0.000001003321333
0.000108002928093
-0.004647941272734
0.099959233380745
-1.074286120871490
4.615719487403345];
fcn=@(x)polyval(D4_poly,x).^2;
fplot(fcn, [19.999825010467916,23.158281544048581] ); axis tight
More Answers (0)
See Also
Categories
Find more on Polynomials in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!