Info
This question is closed. Reopen it to edit or answer.
Creating CNN architecture for binary classification
6 views (last 30 days)
Show older comments
I’m reaching out to kindly ask if somone could review the CNN architecture I’ve implemented in MATLAB. The code is running as expected, but I’d appreciate your expert opinion to confirm whether the structure is sound and appropriate for the task.
Below is a snippet of the architecture and training configuration:
matlab
CopyEdit
%% === CNN Architecture ===
layers = [
sequenceInputLayer(1, 'Name', 'input', 'MinLength', minTrainLen)
convolution1dLayer(5, 32, 'Padding', 'same', 'Name', 'conv1')
batchNormalizationLayer('Name', 'bn1')
reluLayer('Name', 'relu1')
maxPooling1dLayer(2, 'Stride', 2, 'Name', 'pool1')
convolution1dLayer(3, 64, 'Padding', 'same', 'Name', 'conv2')
batchNormalizationLayer('Name', 'bn2')
reluLayer('Name', 'relu2')
dropoutLayer(0.3, 'Name', 'dropout1')
globalAveragePooling1dLayer('Name', 'gap')
fullyConnectedLayer(32, 'Name', 'fc1')
reluLayer('Name', 'relu3')
fullyConnectedLayer(2, 'Name', 'fc_output')
softmaxLayer('Name', 'softmax')
classificationLayer('Name', 'output')
];
%% === Training Options ===
options = trainingOptions('adam', ...
'InitialLearnRate', 1e-3, ...
'MaxEpochs', 30, ...
'MiniBatchSize', max(1, min(64, numel(XTrainFinal))), ...
'Shuffle', 'every-epoch', ...
'ValidationData', {XVal, YVal}, ...
'ValidationFrequency', 5, ...
'ValidationPatience', 2, ...
'Verbose', false, ...
'Plots', 'none', ...
'ExecutionEnvironment', 'auto');
Answers (0)
This question is closed.
See Also
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!