Info

This question is closed. Reopen it to edit or answer.

Creating CNN architecture for binary classification

6 views (last 30 days)
Reem
Reem on 28 Jul 2025
Closed: John D'Errico on 29 Jul 2025
I’m reaching out to kindly ask if somone could review the CNN architecture I’ve implemented in MATLAB. The code is running as expected, but I’d appreciate your expert opinion to confirm whether the structure is sound and appropriate for the task.
Below is a snippet of the architecture and training configuration:
matlab
CopyEdit
%% === CNN Architecture ===
layers = [
sequenceInputLayer(1, 'Name', 'input', 'MinLength', minTrainLen)
convolution1dLayer(5, 32, 'Padding', 'same', 'Name', 'conv1')
batchNormalizationLayer('Name', 'bn1')
reluLayer('Name', 'relu1')
maxPooling1dLayer(2, 'Stride', 2, 'Name', 'pool1')
convolution1dLayer(3, 64, 'Padding', 'same', 'Name', 'conv2')
batchNormalizationLayer('Name', 'bn2')
reluLayer('Name', 'relu2')
dropoutLayer(0.3, 'Name', 'dropout1')
globalAveragePooling1dLayer('Name', 'gap')
fullyConnectedLayer(32, 'Name', 'fc1')
reluLayer('Name', 'relu3')
fullyConnectedLayer(2, 'Name', 'fc_output')
softmaxLayer('Name', 'softmax')
classificationLayer('Name', 'output')
];
%% === Training Options ===
options = trainingOptions('adam', ...
'InitialLearnRate', 1e-3, ...
'MaxEpochs', 30, ...
'MiniBatchSize', max(1, min(64, numel(XTrainFinal))), ...
'Shuffle', 'every-epoch', ...
'ValidationData', {XVal, YVal}, ...
'ValidationFrequency', 5, ...
'ValidationPatience', 2, ...
'Verbose', false, ...
'Plots', 'none', ...
'ExecutionEnvironment', 'auto');
  1 Comment
Matt J
Matt J on 28 Jul 2025
Edited: Matt J on 28 Jul 2025
I believe you already asked that here,
The statement of the question hasn't changed much, so I don't think you will get very different answers.

Answers (0)

This question is closed.

Tags

Products


Release

R2023b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!