How can I fit data to a piecewise function, where the breakpoint of the function is also a parameter to be optimised?
80 views (last 30 days)
Show older comments
Rahul
on 29 Sep 2025 at 20:45
Commented: Image Analyst
about 23 hours ago
I have data with x and y values. This data should conform to a function: an assymmetric parabola. Here, the parameters that define the shape of the parabola should be different on either side of the maximum point of the parabola i.e. the breakpoint is where the maximum value of y occurs.
I was hoping to use 'fit' and to define an anonymous function for my data. But I'm not able to work out how to define an anonymous, piecewise function, especially where the breakpoint is one of the parameters to be determined by the fitting procedure, as it is not immediately clear from the data itself where the maximum value of y should occur.
Any help would be appreciated.
0 Comments
Accepted Answer
Matt J
on 30 Sep 2025 at 4:09
Edited: Matt J
on 30 Sep 2025 at 11:20
Once you've chosen the coefficients of the first parabola [a1,b1,c1], the breakpoint is determined from,
d=-b1/(2*a1)
Only the leading coefficient of the second parabola is a free parameter:
F=@(x) asymParabola(-2,1,0,-0.6,x);
fplot(F,[-10,10]);axis padded %example plot
ft = fittype(@(a1,b1,c1,a2, x) asymParabola(a1,b1,c1,a2, x) )
function y=asymParabola(a1,b1,c1,a2, x)
d=-b1/(2*a1);
b2=-d*2*a2;
c2=polyval([a1,b1,c1],d)-polyval([a2,b2,0],d);
left=(x<=d);
y=x;
y(left)=polyval([a1,b1,c1],x(left));
y(~left)=polyval([a2,b2,c2],x(~left));
end
6 Comments
Image Analyst
21 minutes ago
@Rahul what would have been best is if you had shown a screenshot of your noisy data plotted, and attached the data so that people would have something to work with.
I think the fit values will change because of noise. With one set of noise, you'd have one set of parabola coefficients but if you had a different set of noise, then you have a different set of coefficients. If there is no noise, there is no need for a fit because you have the analytical formula already.
If you have any more questions, then attach your data and code to read it in with the paperclip icon after you read this:
More Answers (3)
Walter Roberson
on 29 Sep 2025 at 21:20
(a1*x.^2 + b1*x + c1) .* (x <= d) + (a2*x.^2 + b2*x + c2) .* (x > d)
Note that for this to work, the coefficients must be constrained to be finite
2 Comments
Paul
on 30 Sep 2025 at 0:37
Sounds like both sides of the function should have the same value at x = d, at least that's how interpret the question. If so, then I think the function would look something like
(a1*(x-d).^2 + b1*(x-d) + c) .* (x <= d) + (a2*(x-d).^2 + b2*(x-d) + c) .* (x > d)
Catalytic
on 30 Sep 2025 at 14:13
Edited: Catalytic
on 30 Sep 2025 at 14:18
You can also parametrize the model function directly in terms of the break point coordinates (xbreak, ybreak) and two curvature parameters -
F= @(a1,a2,xbreak,ybreak, x) modelFun(a1,a2,xbreak,ybreak, x);
xbreak=3; ybreak=5;
fplot( @(x) F(-2,-0.6,xbreak,ybreak,x), [1,5]);
xline(xbreak,'--')
fType = fittype(F);
function y=modelFun(a1,a2,xbreak,ybreak, x)
X=x-xbreak;
LHS=(X<=0);
RHS=~LHS;
y=X.^2;
y(LHS)=a1.*y(LHS) + ybreak;
y(RHS)=a2.*y(RHS) + ybreak;
end
Matt J
on 30 Sep 2025 at 21:15
Edited: Matt J
16 minutes ago
Why ? Both parabola can intersect below their respective maxima, and nonetheless the point of intersection can be the maximum y-value of the piecewise function.
F=@(x) asymParabola(-2,1,0,-6,5,-20 ,x);
fplot(F,[-10,-1]);axis padded %example plot
function y=asymParabola(a1,b1,c1, a2, s, rightSlope, x)
%Requirements: a1<0, a2<0, s>=0, rightSlope<=0
d=-b1/(2*a1)-s;
c2=polyval([a1,b1,c1],d);
left=(x<=d);
right=~left;
xright=x(right);
y=x;
y(left)=polyval([a1,b1,c1],x(left));
y(right)=a2*(xright-d).^2 + rightSlope*(xright-d) +c2;
end
0 Comments
See Also
Categories
Find more on Get Started with Curve Fitting Toolbox in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!