hello everyone, I have faced this error on my CNN: (Layer 5 is expected to have a different size)
6 views (last 30 days)
Show older comments
Khadija Al Jabri
on 15 Nov 2017
Commented: Khadija Al Jabri
on 12 Dec 2017
I'm trying to implement the CNN algorithm that used on paper (A Deep-Network Solution Towards Model-less Obstacle Avoidance)for Lei Tai, Shaohua Li, and Ming Liu; and when I put their specification of CNN layers; I got the following error: using nnet.cnn.layer.Layer>iInferSize (line 266) Layer 5 is expected to have a different size. if anyone has an idea what is going on, which size they mean? and why I got this error? plese, let me Know.
layers = [imageInputLayer([120 160 1],'Normalization','none');
convolution2dLayer(5,32,'NumChannels',1);
reluLayer();
maxPooling2dLayer(2,'Stride',2);
convolution2dLayer(5,32,'NumChannels',1);
reluLayer();
maxPooling2dLayer(2,'Stride',2);
convolution2dLayer(5,64)
reluLayer();
maxPooling2dLayer(2,'Stride',2);
fullyConnectedLayer(5);
softmaxLayer
classificationLayer()];
2 Comments
KALYAN ACHARJYA
on 18 Nov 2017
The above link is not available, pls provide the detail code, so that members can help specifically.
Accepted Answer
Javier Pinzón
on 1 Dec 2017
Hello Khadija,
The error is located in the "NumChannels", it must have the same amout of channels of the filters used in the poir Convolution layer, so, the correct way to write it is:
convolution2dLayer(5,32,'NumChannels',1);
reluLayer();
maxPooling2dLayer(2,'Stride',2);
convolution2dLayer(5,32,'NumChannels', 32);
reluLayer();
maxPooling2dLayer(2,'Stride',2);
convolution2dLayer(5,64)
reluLayer();
maxPooling2dLayer(2,'Stride',2);
fullyConnectedLayer(5);
softmaxLayer
classificationLayer()];
In other cases, it may be no necessary to specify the number of channels, and let it be automaticaly get.
Hop it helps and thanks if the answer is accepted.
Any question, feel free to ask.
Regards,
Javier
7 Comments
Javier Pinzón
on 12 Dec 2017
Hello Khadija,
you can check this link:
With that examples, you can create an array of an amount of numbers. After that, you can play with the datastore. At this moment I cannot show you an example, unfortunately.
Regards
More Answers (0)
See Also
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!